阅读(361) (10)

功能匹配FLANN

2017-10-12 10:30:22 更新

目标

在本教程中,您将学习如何:

Code

本教程代码如下所示。

/*
 * @file SURF_FlannMatcher
 * @brief SURF detector + descriptor + FLANN Matcher
 * @author A. Huaman
 */
#include <stdio.h>
#include <iostream>
#include <stdio.h>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
void readme();
/*
 * @function main
 * @brief Main function
 */
int main( int argc, char** argv )
{
  if( argc != 3 )
  { readme(); return -1; }
  Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );
  Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );
  if( !img_1.data || !img_2.data )
  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
  //-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
  int minHessian = 400;
  Ptr<SURF> detector = SURF::create();
  detector->setHessianThreshold(minHessian);
  std::vector<KeyPoint> keypoints_1, keypoints_2;
  Mat descriptors_1, descriptors_2;
  detector->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1 );
  detector->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2 );
  //-- Step 2: Matching descriptor vectors using FLANN matcher
  FlannBasedMatcher matcher;
  std::vector< DMatch > matches;
  matcher.match( descriptors_1, descriptors_2, matches );
  double max_dist = 0; double min_dist = 100;
  //-- Quick calculation of max and min distances between keypoints
  for( int i = 0; i < descriptors_1.rows; i++ )
  { double dist = matches[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
  }
  printf("-- Max dist : %f n", max_dist );
  printf("-- Min dist : %f n", min_dist );
  //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
  //-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
  //-- small)
  //-- PS.- radiusMatch can also be used here.
  std::vector< DMatch > good_matches;
  for( int i = 0; i < descriptors_1.rows; i++ )
  { if( matches[i].distance <= max(2*min_dist, 0.02) )
    { good_matches.push_back( matches[i]); }
  }
  //-- Draw only "good" matches
  Mat img_matches;
  drawMatches( img_1, keypoints_1, img_2, keypoints_2,
               good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
               vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
  //-- Show detected matches
  imshow( "Good Matches", img_matches );
  for( int i = 0; i < (int)good_matches.size(); i++ )
  { printf( "-- Good Match [%d] Keypoint 1: %d  -- Keypoint 2: %d  n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
  waitKey(0);
  return 0;
}
/*
 * @function readme
 */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

结果

以下是应用于第一张图像的特征检测的结果:

功能匹配FLANN

另外,我们得到作为控制台输出的关键点过滤:

功能匹配FLANN