今天学习的是一篇 2018 年 Airbnb 的一篇工业论文《Real-time Personalization using Embeddings for Search Ranking at Airbnb》,介绍的是 Word2Vec 在 Airbnb 推荐场景中的应用。大概内容就是从用户日志中抽取用户...
Word2Vec 是 Google 在 2013 年开源的一个词向量(Word Embedding)计算工具,其用来解决单词的分布编码问题,因其简单高效引起了工业界和学术界极大的关注。...
今天阅读的是 Google 同学 2019 年的论文《ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS》。
论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Foreground-Aware_Relation_Network_for_Geospatial_Object_Segmentation_in_High_Spatial_CVPR_2020...
今天分享一篇发表在MICCAI 2020上的论文:Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss (原文链接:[1])。
随着深度学习模型复杂度和数据集规模的增大,计算效率成为了不可忽视的问题。GPU凭借强大的并行计算能力,成为深度学习加速的标配。然而,由于服务器的显存非常有限,随着训练样本越来越大,显存连一个样本都容不下的现象频频...
MIND算法全称为:Multi-Interest Network with Dynamic Routing for Recommendation at Tmall,由阿里的算法团队开发。
《FairMOT:A Simple Baseline for Multi-Object Tracking》是一个online的多目标跟踪(MOT)算法,基于TBD(Traking-by-Detection)的策略,FairMOT主要就是基于JDE做的改进,可以简单的理解为,FairMOT是将JDE的YOLOv3的主干,......
本文是「小孩都看得懂」系列的第九篇,本系列的特点是极少公式,没有代码,只有图画,只有故事。内容不长,碎片时间完全可以看完,但我背后付出的心血却不少。喜欢就好!...
BERT和RoBERTa在文本语义相似度等句子对的回归任务上,已经达到了SOTA的结果。但是,它们都需要把两个句子同时喂到网络中,这样会导致巨大的计算开销:从10000个句子中找出最相似的句子对,大概需要5000万(C100002=49,995,000)...