基于深度学习的目标检测和实例分割取得了前所未有的进展。在本文中,我们提出了CIoU (Complete-IoU)损失和Cluster-NMS来增强边界盒回归和非最大抑制(NMS)中的几何因子,在不牺牲推理效率的情况下,平均精度(AP)和平均召回...
边界盒回归是目标检测的关键步骤。在现有的方法中,虽然n范数损失被广泛地应用于包围盒回归,但不适合用于评估度量,即IoU。最近,有学者提出了IoU损失和广义IoU(GIoU)损失来衡量IoU度量,但仍存在收敛速度慢和回归不准确的问题...
目标检测中的不平衡问题是一个非常古老的问题,自检测器诞生初始,各位学者就在进行研究。本文对目标检测中的不平衡问题(Class imbalance, Scale imbalance, Spatial imbalance, Objectiveimbalance)进行了全面的综述。...