6月第一周的周末,分享几篇本周CV领域的论文,其中上海交大实时语义分割模型LRNNet和Facebook借助NAS得到的主干网模型FBNetV3很吸引人。
一位新冠肺炎病人的CT影像大概在300张左右,平均一个病例医生靠肉眼分析需要5-15分钟。护目镜有时受到雾气的影响,影响视力,也必须慎之又慎,既要鉴别出普通肺炎、结核以及肺部肿瘤等,又不能放过任何一个疑似病例。“火眼金...
目标检测的框架根据ROI pooling 层可以分为两个子网络: - 共享的,全卷积子网络,独立于ROI; - 各个ROI子网络,不共享计算
AC-FPN——用于目标检测的注意力引导上下文的特征金字塔网络 ,即插即用的新FPN模 块,替换Cascade R-CNN、Mask R-CNN等网络中的FPN,可直接涨点2%-3%!
特征降维有两个目的:其一,我们会经常在实际项目中遭遇特征维度非常之高的训练样本,而往往又无法借助自己的领域知识人工构建有效特征;其二,在数据表现方面,我们无法用肉眼观测超过三个维度的特征。因此,特征降维不仅重...
我们读yolov3论文时都知道边框预测的公式,然而难以准确理解为何作者要这么做,这里我就献丑来总结解释一下个人的见解,总结串联一下学习时容易遇到的疑惑,期待对大家有所帮助,理解错误的地方还请大家批评指正,我只是个小白哦...
自从深度学习被应用到计算机视觉领域,目标检测算法在短时间内有了很大的进步,甚至有人为了抢个车位用上了Mask R-CNN进行自动检测
Inverted bottleneck layers, IBN已成为终端设备SOTA目标检测方法的主要模块。而在这篇文章里,作者通过重新分析研究终端芯片加速下的常规卷积而对“IBN主导的网络架构是否最优”提出了质疑。作者通过将常规卷积纳入搜...
【导读】前面我们详细介绍了目标检测领域常用的一些评价指标。本文我们来讨论一下在目标检测算法中必须掌握的两个基本概念:边框回归和NMS(非极大值抑制)。...
【导读】本篇博文我们一起来讨论总结一下目标检测任务中用来处理目标多尺度的一些算法。视觉任务中处理目标多尺度主要分为两大类: