论文地址:http://arxiv.org/pdf/2004.10934v1.pdf 代码:https://github.com/alexeyab/darknet 论文名称:YOLOv4: Optimal Speed and Accuracy of Object Detection 原文作者:Alexey Bochkovskiy、Chien-YaoWang 和 Hong-Yuan Mark Liao
当前随着深度学习算法的的快速发展,出现了很多特征提取网络结构,可以提高算法的精度。但是需要在大数据集上对这些特征组合进行实际测试,并对结果进行理论验证。有些特征专门针对某些模型和某些问题,或者只针对小规模数据集;而一些其他的模型,如批处理标准化和剩余连接,适用于大多数模型、任务和数据集等。本文假设这些通用的模型包括:Weighted-Residual-Connections (WRC),Cross-Stage-Partial-connections(CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) andMish-activation。本文使用的一些新的网络结构包括:WRC,CSP,CmBN,SAT,Mish激活,马赛克数据增强,CmBN,DropBlock正则化和CIoU损失,并结合其中的几项来达到SOTA的表现结果。经过测试在MS COCO数据集上使用Tesla V100 GPU实时处理速度达到65FPS,精度为43.5%AP(65.7%AP50)。
目的:YoloV4 的基本目标是提高生产系统中神经网络的运行速度,同时为并行计算做出优化,而不是针对低计算量理论指标(BFLOP)进行优化。YOLOv4几乎没有像前几代YOLO一样提出一些创新性的东西,而是大量列举了近几年以来关于目标检测的一些最新技术和成果,并对这些方法进行了大量的人工试验,可以认为是一种人工NAS,用试验的方式来选择一系列新的方法来对YOLOv3从网络结构、训练、数据增强等多个层面进行相应的增强,从而达到更好的效果。
改进:论文提出YOLOv4,相对于YOLOv3在准确率上提升了近10个点,然而速度并几乎没有下降,其主要的改进点为一下三个方面:
1、建立了一个高效强大的目标检测模型。它使得每个人都可以使用 1080Ti 或 2080Ti 的 GPU 来训练一个快速准确的目标检测器。
2、验证了当前最优 Bag-of-Freebies 和 Bag-of-Specials 目标检测方法在检测器训练过程中的影响。
3、修改了 SOTA 方法,使之更加高效,更适合单 GPU 训练。这些方法包括 CBN、PAN、SAM 等。
4、作者对以前的各种算法做了大量的调优实验,几乎快赶上一篇综述了,所以强烈建议大家阅读原文。
下面是论文具体框架结构以及实验结果:
声明:文章来自于网络,仅用于学习分享,版权归原作者所有,侵权请联系删除。