paper链接:https://arxiv.org/abs/1909.00169.pdf
本文是一篇来自Carnegie Mellon大学和Argo AI的合作工作,目前已经被CVPR20接收(oral),该文的主要内容是基于点云的3D目标检测,与以往的研究内容不同的是,本文基于观察发现在BEV视图中无法区分free和unknown区域,如下图中(a)...
paper地址:https://arxiv.org/pdf/2004.01389.pdf
这是一篇来自CVPR2020的研究工作,于2020/4/9日开源,如下图所示,目前被接收的文章有在KITTI上的有四篇,分别是PV-RCNN,SA-SSD,Point-GNN和这一篇文章,应该说pvrcnn在精度上是独树一帜的远高于第二名的,不过这些文章在创新性...
摘要随着低成本、紧凑型2.5/3D视觉传感设备的出现,计算机视觉界对室内环境的视景理解越来越感兴趣。本文为本课题的研究提供了一个全面的背景,从历史的角度开始,接着是流行的三维数据表示和对可用数据集的比较分析。在深...
三维数据通常可以用不同的格式表示,包括深度图像、点云、网格和体积网格。点云表示作为一种常用的表示格式,在三维空间中保留了原始的几何信息,不需要任何离散化。因此,它是许多场景理解相关应用(如自动驾驶和机器人)的首选...
机器人抓取涉及检测、分割、姿态估计、抓取点检测、路径规划等任务,本文主要介绍这些任务的评估标准。
Depthwise卷积在现代高效convnet中越来越流行,但它的核大小常常被忽略。本文系统地研究了不同核大小的影响,并观察到结合多核大小的优点可以获得更好的精度和效率。在此基础上,提出了一种新的混合深度卷积(MixConv),它在一...
http://mi.eng.cam.ac.uk/projects/relocalisation/
这一篇文章主要介绍一篇发表在ECCV20上的采用多模态融合的3D目标检测的文章,并总结一下目前多多模态的方法。所谓多模态融合,即采取多种传感器数据作为深度学习网络的输入,多模态融合的好处多种传感器获取到的信息存在互...