最新 最热

PCA主成分分析学习笔记 + Matlab实现

PCA (Principal Component Analysis) 主成分分析是目前最常用的数据降维方法之一,主要思路是将n维的数据投影到k(n>k)维空间超平面(直线的高维推广)上面去,使得各个样本点到超平面的投影距离最小(欧式距离)且方差最大。...

2021-06-11
0

我的Python书被台湾的出版社引进版权了,书的名字也更吸引人了

我去年出了一本Python书,基于股票大数据分析的Python入门实战,在这本书里,我是用股票范例讲述Pythorn的爬虫,数据分析和机器学习知识点,如下是京东的连接。...

2021-06-01
0

你够全面了解L1与L2正则吗?

) 是机器学习中对原始损失函数引入惩罚项,以防止过拟合或提高模型泛化性能的一类方法的统称。所谓惩罚是指对损失函数中的某些参数做一些限制。此时目标函数变成了原始损失函数+惩罚项,常用的正则项一般有两种,英文称作...

2021-05-28
0

用机器学习方法提高中国次季节降水预报的准确性

中国科学技术大学博士生王岑、南京信息工程大学研究生贾朝莹、百度公司尹朝晖老师、中山大学刘飞老师以及中国科学技术大学陆高鹏老师、郑建秋老师,以Hwang等人在2019年提出的机器学习模型为基础,对中国降水进行次季节...

2021-05-20
0

Lasso 和 Ridge回归中的超参数调整技巧

在这篇文章中,我们将首先看看Lasso和Ridge回归中一些常见的错误,然后我将描述我通常采取的步骤来优化超参数。代码是用Python编写的,我们主要依赖scikit-learn。本文章主要关注Lasso的例子,但其基本理论与Ridge非常相似。...

2021-05-18
0

多元线性回归

给出自变量、因变量和误差项的实例数据,假设 现在不知道回归方程中的参数,运用最小二乘法求解三个参数,得出 β=11.292,β1=11.307,β2=-6.591,这与原参数天差地别。。。...

2021-05-14
0

机器学习,学前概览

学习了这么多年,越发感觉自己不会学习,越发的意识到死读书,读死书的套路已经行不通了,于是我想稍微改变一下学习方法,首先总览全局,高屋建瓴,之后再逐一突破!效果如何,从今天开始见证!...

2021-05-14
1

线性回归分析,你真的会吗?

机器学习三大主要分支:监督学习、无监督学习和半监督学习。对于监督学习,根据目标数据类型的不同分为二大核心任务:分类和回归。其中分类指目标数据为离散型变量,回归指目标数据为连续型变量。对于回归分析方法,本文主要介...

2021-05-13
0

R语言多项式回归拟合非线性关系

当我们分析有一些弯曲的波动数据时,拟合这种类型的回归是很关键的。 在这篇文章中,我们将学习如何在R中拟合和绘制多项式回归数据。我们在这个回归模型中使用了lm()函数。虽然它是一个线性回归模型函数,但通过改变目标公...

2021-05-11
0

机器学习 | Logistic Regression(逻辑回归)中的损失函数

问题:线性回归中,当我们有m个样本的时候,我们用的是损失函数是但是,到了逻辑回归中,损失函数一下子变成那么,逻辑回归的损失函数为什么是这个呢?本文目录1. 前置数学知识:最大似然估计1.1...

2021-05-06
0