最新 最热

当Sklearn遇上Plotly,会擦出怎样的火花?

Plotly:协同 Python 和 matplotlib 工作的 web 绘图库官网链接:https://plot.ly/python/

2021-06-24
1

Statsmodels线性回归看特征间关系

在机器学习中的线性回归,一般都会使用scikit-learn中的linear_model这个模块,用linear_model的好处是速度快、结果简单易懂,但它的使用是有条件的,就是使用者在明确该模型是线性模型的情况下才能用,否则生成的结果很可能是...

2021-06-24
0

万字长文,演绎八种线性回归算法最强总结!

回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析、时间序列模型以及发现变量之间的因果关系。...

2021-06-24
0

太厉害了!Seaborn也能做多种回归分析,统统只需一行代码

lmplot是一种集合基础绘图与基于数据建立回归模型的绘图方法。通过lmplot我们可以直观地总览数据的内在关系。显示每个数据集的线性回归结果,xy变量,利用'hue'、'col'、'row'参数来控制...

2021-06-24
0

支持向量机1--线性SVM用于分类原理

在机器学习中,支持向量机(SVM,也叫支持向量网络),是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。是由Vapnik与同事(Boser等,1992;Guyon等,1993;Vapnik等,1997)在AT&T贝尔实验室开发。支持向量机是基于统计学习框...

2021-06-24
0

机器学习 | 逻辑回归算法(二)LogisticRegression

逻辑回归是一种广义线性回归模型,是Sigmoid函数归一化后的线性回归模型,常用来解决二元分类问题,可解释性强。它假设数据服从伯努利分布,通过梯度下降法对其损失函数(极大似然函数)求解,以达到数据二分类的目的。...

2021-06-24
0

机器学习 | 逻辑回归算法(一)理论

逻辑回归是线性分类器,其本质是由线性回归通过一定的数学变化而来的。要理解逻辑回归,得先理解线性回归。线性回归是构造一个预测函数来映射输入的特性矩阵和标签的线性关系。线性回归使用最佳的拟合直线(也就是回归线)在...

2021-06-24
0

机器学习 | 多项式回归处理非线性问题

之前我们学习了一般线性回归,以及加入正则化的岭回归与Lasso,其中岭回归可以处理数据中的多重共线性,从而保证线性回归模型不受多重共线性数据影响。Lasso主要用于高维数据的特征选择,即降维处理。...

2021-06-24
0

机器学习 | 深度理解Lasso回归分析

上篇《线性回归中的多重共线性与岭回归》(点击跳转)详细介绍了线性回归中多重共线性,以及一种线性回归的缩减(shrinkage)方法 ----岭回归(Ridge Regression),除此之外另一种线性回归的缩减方法----Lasso回归亦可解决多...

2021-06-24
0

线性回归中的多重共线性与岭回归

上篇文章《简单而强大的线性回归详解》(点击跳转)详细介绍了线性回归分析方程、损失方程及求解、模型评估指标等内容,其中在推导多元线性回归使用最小二乘法的求解原理时,对损失函数求导得到参数向量 的方程式...

2021-06-24
0