最新 最热

机器学习系列:(四)从线性回归到逻辑回归

从线性回归到逻辑回归在第2章,线性回归里面,我们介绍了一元线性回归,多元线性回归和多项式回归。这些模型都是广义线性回归模型的具体形式,广义线性回归是一种灵活的框架,比普通线性回归要求更少的假设。这一章,我们讨论广...

2018-04-23
0

【V课堂】R语言十八讲(十七)—主成分分析

?理解主成分分析这个模型前,可能需要一定的线性代数的知识,当然若没有基本也能看下去,只是可能比较困弄清楚,但这篇短文会尽可能给你的写得浅显易懂,不涉及太多公式推导,先让我们关注一下我们可能面对的问题...

2018-04-23
0

【V课堂】R语言十八讲(十六)—广义线性模型

所谓广义线性模型,顾名思义就是一般狭义线性模型的推广,那我们先看看我们一般的狭义线性模型,这在第十讲也说过可以参看http://www.ppvke.com/Blog/archives/30010,我们经常说的线性回归是OLS线性模型.这种模型的拟合...

2018-04-23
0

【V课堂】R语言十八讲(十五)—-置换检验和自助法

不知道看到这里,读者有么有发现,前面讲了那么多方法,几大检验,回归分析,方差分析“都有一个共同的特点,那就是有一定的前提假设,只有满足这个假设时,模型才有较好的效果.我们可以来回顾一下: 线性回归因变量呈正态分...

2018-04-23
0

【V课堂】R语言十八讲(十二)—-方差分析

前面讲到了回归分析以及回归诊断,我们知道回归分析的两个用途,一是用作预测,二是用作分类,即解释作用.如果我们稍作留意便可以注意到,回归分析的自变量,包括因变量都是数值型的,那么,如果自变量是因子型的,...

2018-04-23
0

【V课堂】R语言十八讲(十一) –回归诊断

上一篇讲到了,模型的拟合,以及运用系统的plot函数进行简单的回归诊断,得到了四幅图,大致可以判断模型的假设是否成立,然而,这还远远没有结束,这一篇我们将着重讲讲模型的诊断与优化改进,将会用到几个包,以及有许多的...

2018-04-23
0

【V课堂】R语言十八讲(九)—-假设检验

前面八章介绍了R软件的基础知识,这些知识都是零碎的操作与处理,虽然不能处理一个完整的实际案例,但却非常重要,接下来,主要讲数据挖掘中处理实际案例之前,所需要的一些模型和功能,我们先从传统的统计学开始,...

2018-04-23
0

【V课堂】机器学习系列:(二)线性回归

线性回归本章介绍用线性模型处理回归问题。从简单问题开始,先处理一个响应变量和一个解释变量的一元问题。然后,我们介绍多元线性回归问题(multiple linear regression),线性约束由多个解释变量构成。紧接着,我们介绍多项式...

2018-04-23
0

[机器学习Lesson4]多元线性回归

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回...

2018-04-21
0

深度学习的前身,神经网络与神经元的概念

作者:Free深度学习可以说是目前“人工智能浪潮”火热的一个根本原因,就是因为它的兴起,其中包括深度神经网络、循环神经网络和卷积神经网络的突破,让语音识别、自然语言处理和计算机视觉等基础技术突破以前的瓶颈。而要了...

2018-04-18
0