作者:Free
深度学习可以说是目前“人工智能浪潮”火热的一个根本原因,就是因为它的兴起,其中包括深度神经网络、循环神经网络和卷积神经网络的突破,让语音识别、自然语言处理和计算机视觉等基础技术突破以前的瓶颈。而要了解深度学习,就必须首先了解“深度学习”的前身,神经网络与神经元的概念。
一、神经元的构成
神经元可以说是深度学习中最基本的单位元素,几乎所有深度学习的网络都是由神经元通过不同的方式组合起来。
一个完整的神经元由两部分构成,分别是“线性模型”与“激励函数”。如果看过之前的文章,相信可以回忆起其中“线性回归”和“激励函数”的概念
1.线性模型
(1)构成
假设这个线性模型的函数: y=wx b(有木有很熟悉),其中x是一个1xn的向量矩阵,矩阵中的每个向量值即代表样本一个特征的值,w为nx1的权重矩阵(对应向量的所占的比重),b为偏置项。
(2)工作流程
以判定一个苹果的品质为例,我们假定y代表品质变量,x为1×3矩阵,w为3×1矩阵(偏置忽略为0的情况下),具体如下
x矩阵里的向量值“1、2、3”分别代表一个数据中提取出来的特征向量的值。
w矩阵里的“0.2、0.6、0.7”分别代表每个特征向量的权重取值大小。
这两个矩阵相乘,最终会得到一个实数(涉及到数学矩阵运算,并非所有都会是实数哦~)
1X0.2 2X0.6 3X0.7=3.5
得到的3.5即我们拟合出来的一个苹果的品质假定为y1,用这个值与已经标定好的真实品质y0做差,就可以得到一个数据的拟合值与真实值的误差,当然真实的计算这可是海量数据计算
用到我第一章分享“线性回归”中对全局性误差函数的定义
通过这个函数来描述所有数据拟合值与真实值之间的关系,目的也是和机器学习一样,最终是要找到一个符合要求的Loss与w,b之间的映射关系
以上单个神经元中“线性模型”的运算流程,本质和机器学习中的“线性回归”过程是没有区别的
2.激励函数
(1)激励函数的作用
激励函数位于一个神经元线性模型之后,也有翻译成激活函数。它的作用有两个:
加入“非线性”因素
根据不同训练目的的需要,进行数学函数映射
为什么要加入“非线性”因素,那是因为“现实世界”的数据不可能都是线性的,如果你强行用“线性模型”去拟合非线性数据,最后得到的结果肯定是“欠拟合”
怎么理解数学函数映射呢,在这里拿最常用的Sigmoid函数举例
Sigmoid函数定义:
激励函数之前的线性模型“y=wx b”已经经过运算得到了一个实数(即前面的3.5)
可以作如下的推导
则激励函数sigmoid变为
下图为Sigmoid函数图形,由图像可以看出,最初的x经过“线性模型”映射为z(z理论上可以为任意大小的实数),而z经过激励函数的再一次映射,最后的输出必然为了【0,1】区间的实数,这就实现了一次数学函数的映射。
它可以实现一个简单的概率分类判断,假定“0”和“1”各代表一个概念,那么最后的输出在区间【0,1】,更接近“1”,就代表它是更可能是“1”所代表的概念
(2)激励函数的种类
激励函数的种类实在很多,应用的场景也各不相同,比较常见的除了上面提到的Sigmoid函数外,还有多用于RNN(循环神经网络)的Tanh函数,大部分用于CNN(卷积神经网络)的ReLU函数,以及Linear函数等。
在这里就不一一列举他们的公式和函数图像了,总之每个激励函数都有自己的“个性”(特性),根据不同的算法模型和应用场景,会搭配使用不同的激励函数,当然最终的目的只有一个,就是让算法模型收敛的越快,拟合的越好
二、神经网络
1.神经网络的构成
神经网络,其实就是多个神经元横向与纵向的堆叠,最为简单和基础的神经网络可以用下图来表示
通常分为以下三层:
输入层:负责直接接受输入的向量,通常情况下不对数据做处理,也不计入神经网络的层数。
隐含层:是整个神经网络最为重要的部分,它可以是一层,也可是N层,隐含层的每个神经元都会对数据进行处理。
输出层:用来输出整个网络处理的值,这个值可能是一个分类向量值,也可能是一个类似线性回归那样产生的连续的值。
2.神经网络工作流程
初步的理解,神经元就是通过图中首尾相连的方式进行连接并实现数据传递,上一个神经元的输出,会成为下一层神经元的输入。对于一个x向量中的任意一个维度的分量,都会在整个神经网络进行一层一层地处理。
神经网络的厉害之处就在于,我们可以调节神经网络的层数,网络的拓扑结构以及神经元的参数,去改变对一个输入向量x的不同数学维度上的处理方式,进而达成不同的训练目的。这也是后来像DNN、RNN、CNN成为当下人工智能炙手可热的一大原因。(其实DNN,但从结构上来说,可以简单理解为层数的增加,进而带来对特征的提取和抽象能力的增强)
当然,随着网络层数的增加,拓扑结构的复杂,随之而来也会带来整个神经网络的副作用和难题,比如容易陷入局部最优解,梯度消失严重等问题。这也是后续需要探讨和深化了解的东西。
End.