作为2020年人工智能学界的第一个顶会,AAAI 2020正在美国纽约举行,最佳论文等各大奖项已经揭晓。
语义分割结合了图像分类、目标检测和图像分割,通过一定的方法将图像分割成具有一定语义含义的区域块,并识别出每个区域块的语义类别,实现从底层到高层的语义推理过程,最终得到一幅具有逐像素语义标注的分割图像。...
分享一篇今天新出的论文DivideMix: Learning with Noisy Labels as Semi-supervised Learning,来自SalesForce研究院的工程师提出一种使用半监督学习方法改进含噪声标签数据的学习,显著改进了精度,大幅超越之前的State-o...
深度自监督学习(deep self-supervised learning)近来受到了极大关注,很多可用于解决图像和视频的自监督学习方法涌现了出来。不同的数据模态具有截然不同的数据特性,在自监督学习的场景中所引发的技术挑战性也是截然不...
如今,在 ImageNet 上的图像识别准确率的性能提升每次通常只有零点几个百分点,而来自图灵奖获得者 Geoffrey Hinton 等谷歌研究者的最新研究一次就把无监督学习的指标提升了 7-10%,甚至可以媲美有监督学习的效果。...
深度学习优化方法都有哪些?其理论依据是什么?最近,来自伊利诺伊大学香槟分校(UIUC)的研究者孙若愚就此主题写了一篇长达 60 页的综述论文。
2 月 7 日,人工智能顶会 AAAI 2020(第 34 届 AAAI 大会)已于美国纽约正式拉开序幕,本届会议将持续到 2 月 12 日结束。受疫情影响,中国大陆约有 800 名学者缺席此次会议,很多中国学者选择远程参会。...
摘要: 目前AI在图片分类方向已经做得非常优秀,有的甚至超过人类。但是,这仅仅限于模型经过已知样本的学习。令模型像人一样具有推理能力,通过已知样本可以对未知分类进行识别,这将是未来的一个主要方向,也是AI技术智能化的...
在一些统计书籍中,我们经常会发现回归是衡量一个变量的均值与其他值的对应值之间相互关系的量度。那么让我们讨论一下该如何看待它。
大规模标注的数据集的出现是深度学习在计算机视觉领域取得巨大成功的关键因素之一。然而监督式学习过于依赖大规模标注数据集,数据集的收集和人工标注需耗费大量的人力成本。自监督模型解决了这一难题,它能够从大规模未...