近年来人工智能和大数据的迅速发展正在深刻改变着这个世界和我们的生活方式。人工智能的核心是机器学习(Machine Learning) 算法,自 2006 年以来,在机器学习领域,以深度学习(Deep Lerning) 为代表的机器学习算法取得了突...
随着大数据的爆发,以及计算机算力的加强,以机器学习为代表的人工智能领域逐渐火热起来。机器学习有以下几个构成要素
接触机器学习已经3年多,书是看了几本,网课也上了不少节,但由于没有真实应用,还停留在抄代码的阶段,一直没能进步。到了21年立flag的日子,就拿出它来,与自己约定,做一个系列,坚持每周一篇,从学习到应用。...
随着 AI 的不断研究和发展,各类 AI 算法在不同场景中的应用层出不穷,关于 AI 及其在日常任务中支持甚至取代人类工作的能力的讨论无处不在。例如,在自动驾驶领域,尽管在目前的条件下自动汽车还不能完全替代人类,但关于何时...
一直以来都非常欣赏微软的研究,尤其是可形变卷积,这个工作在我看来非常的有创造力(很喜欢可形变卷积这个思路),这次借着RepPoints这篇最新的论文,回顾一下可形变卷积。...
连接图是麻省理工学院和哈佛大学广泛研究所、哈佛大学创新科学实验室(LISH)和美国国立卫生研究院共同基金综合网络细胞特征库(LINCS)的一个项目,它提出了这一挑战,目标是通过改进MoA预测算法来推进药物开发。...
本文主要聚焦于小模型(即轻量型模型)的自监督学习问题,作者通过实证发现:对比自监督学习方法在大模型训练方面表现出了很大进展,然这些方法在小模型上的表现并不好。...
参考链接: 使用Scikit-Learn在Python中进行embedding/投票分类
1.统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行分析与预测的一门学科。统计学习包括监督学习、非监督学习、半监督学习和强化学习。 2.统计学习方法三要素——模型、策略、算法,对理解统计学习方...
文章目录 #深度强化学习面试题目总结 什么是强化学习? 强化学习(Reinforcement Learning, RL),又称增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体...