深度强化学习面试题目总结什么是强化学习? 强化学习(Reinforcement Learning, RL),又称增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标...
paper: Contextualized Weak Supervision for Text Classification
有监督的机器学习模型往往具有显著的预测能力,很多学术文献为解释性提供了多样的、有时是稍有矛盾的描述,并提供了很多的技术来呈现可解释的模型。可解释性的定义并不明确,但是,人们还是都宣称他们的模型是可解释,尽管没有...
摘要:行人重识别(Person Re-Identification,简称Re-ID),是一种利用计算机视觉技术来检索图像或者视频序列中是否存在特定行人的AI技术,在智慧城市等监控场景中具有重要的应用意义和前景。本文介绍我们最新的IEEE TPAMI综述...
在本文中,作者重新审视了迁移学习的简单范式:首先在一个大规模标记数据集(例如JFT-300M和ImageNet-21k数据集)上进行预训练,然后对目标任务上的每个训练权重进行精调任务,减少目标任务所需的数据量和优化时间。作者们拟议的...
「Key insight:」 虽然预训练BERT已经广泛地运用到了各种下游的NLP任务上,但在文本语义相似度计算任务上,未经微调的BERT句向量的质量常常不如GloVe句向量。针对这个问题,作者首先分析了BERT句向量分布的性质,然后利用标...
自监督学习作为无监督学习的一个特例,可以理解它是一种没有人工标注标签的监督学习,即没有人类参与的监督学习。
2020 年最后一天,LSTM 发明人、深度学习元老 Jürgen Schmidhuber 发表博客文章,回顾了 30 年前其团队发表的关于利用人工进行规划和强化学习的研究工作。
本文全面介绍了端到端深度学习人脸识别技术,包括人脸检测,人脸预处理和人脸 表征等方向,详细介绍了最新的算法设计,评估指标,数据集,性能比较等。...
我们谈起机器学习经常会听到监督学习和非监督学习,它们的区别在哪里呢?监督学习是有标签的,而非监督学习是没有标签的。比如有一批酒,我们知道里面包括红酒和白酒,算法f可以用于鉴别某一个酒是否为红酒和白酒,这时候算法f就...