大家好,这里是NewBeeNLP。深度学习时代,某些领域,如计算机视觉、自然语言处理等,因为模型具有很强的特征表达能力,特征工程显得不那么重要了。...
机器学习的开发基本分为六个步骤, 1)获取数据, 2)数据处理, 3)特征工程, 4)机器学习的算法训练(设计模型), 5)模型评估, 6)应用。
Awesome Fine-grained Visual Classification Awesome Fine-Grained Image Analysis – Papers, Codes and Datasets—-weixiushen
LR模型是广义线性模型。LR模型(对数几率回归模型),虽然叫回归,但是其本质为分类。对数几率函数是一种sigmoid函数。
特征工程是机器学习中的第一步,会直接影响机器学习的结果。可以说数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。特征工程包括特征提取、特征预处理和特征降维等。...
携程作为中国领先的综合性旅行服务公司,每天向超过2.5亿会员提供全方位的旅行服务,因此每天都会产生海量的用户行为数据,这些数据蕴含着丰富的信息资源。另外,客户是企业的重要资源,也是企业的无形资产,客户的流失,也就意味...
sklearn,全称scikit-learn,是python中的机器学习库,建立在numpy、scipy、matplotlib等数据科学包的基础之上,涵盖了机器学习中的样例数据、数据预处理、模型验证、特征选择、分类、回归、聚类、降维等几乎所有环节,功能十...
本周给大家分享的数据分析案例是泰坦尼克号幸存者预测的项目,没记错的话,这应该是很多朋友写在简历上的项目经历。如果你目前正在找工作,自身缺少项目经历并且想要充实项目经历的话,可以考虑一下这个项目!...
上周在Datawhale分享了一篇关于数据挖掘赛事的baseline方案,有老师把它作为学习资料给学生实践学习后,有挺多同学反应学习实践中仍然有困难:
第三届阿里云磐久智维算法大赛:本次比赛要求选手基于故障工单与系统日志数据构建多分类模型,要求能够快速高效的定位出故障类型。