最新 最热

【数据挖掘】K-Means 二维数据聚类分析 ( K-Means 迭代总结 | K-Means 初始中心点选择方案 | K-Means 算法优缺点 | K-Means 算法变种 )

③ 距离计算方式 : 使用 曼哈顿距离 , 计算样本之间的相似度 ; 曼哈顿距离的计算方式是 两个维度的数据差 的 绝对值 相加 ;

2023-03-27
1

【数据挖掘】K-Means 一维数据聚类分析示例

1 . 距离公式选择 : 一维数据 直接使用 曼哈顿距离 计算即可 , 二维数据 需要使用 欧几里得距离 计算 ;

2023-03-27
0

【数据挖掘】聚类 Cluster 矩阵转换 数据矩阵 -> 相似度矩阵 ( 二元变量简介 | 二元变量可能性表 | 对称二元变量 | 简单匹配系数 | 非对称二元变量 | Jaccard 系数

3 . 二元变量 的 相似度 计算方法 : 使用 区间标度变量 求样本间距离的方式 处理二元变量 , 误差很大 , 因此这里引入 二元变量可能性表 , 来计算样本的二元变量属性的相似度 ;...

2023-03-27
0

【数据挖掘】聚类 Cluster 简介 ( 概念 | 应用场景 | 质量 | 相似度 | 算法要求 | 数据矩阵 | 相似度矩阵 | 二模矩阵 | 单模矩阵 )

1 . 聚类简介 : 已知 原始的数据集 , 没有类标签 , 没有训练集 , 测试集 , 数据集所有属性已知 ; 设计聚类算法 , 根据聚类算法将数据集进行分组 ; ( 数据集 -> 聚类算法 -> 数据分组 )...

2023-03-27
1

【数据挖掘】神经网络 后向传播算法 ( 梯度下降过程 | 梯度方向说明 | 梯度下降原理 | 损失函数 | 损失函数求导 | 批量梯度下降法 | 随机梯度下降法 | 小批量梯度下降法 )

1 . 后向传播算法 : 针对每个数据样本 , 从输入层到输出层传播输入 , 这是向前传播输入 , 然后从输出层向输入层传播误差 , 这是向后传播误差 ;

2023-03-27
0

【数据挖掘】神经网络 后向传播算法 向前传播输入 案例计算分析 ( 网络拓扑 | 输入层计算 | 隐藏层计算 | 输出层计算 )

② 连接方式 : 该网络结构中的连接方式是全连接方式 , 即每个节点都连接全部的相邻层的节点 ; ( 与之对应的是局部连接 )

2023-03-27
0

【数据挖掘】神经网络简介 ( 有向图本质 | 拓扑结构 | 连接方式 | 学习规则 | 分类 | 深度学习 | 机器学习 )

1 . 神经网络组成 : 由 一组 连接的 输入 和 输出单元 组成 , 每个连接都有一个 权值 ( 系数 ) ;

2023-03-27
0