③ 距离计算方式 : 使用 曼哈顿距离 , 计算样本之间的相似度 ; 曼哈顿距离的计算方式是 两个维度的数据差 的 绝对值 相加 ;
1 . 距离公式选择 : 一维数据 直接使用 曼哈顿距离 计算即可 , 二维数据 需要使用 欧几里得距离 计算 ;
3 . 二元变量 的 相似度 计算方法 : 使用 区间标度变量 求样本间距离的方式 处理二元变量 , 误差很大 , 因此这里引入 二元变量可能性表 , 来计算样本的二元变量属性的相似度 ;...
① 举例 : 重量 , 高度 , 长度 , 距离 , 经纬度 , 温度 , 气压 等由 数值 和 刻度单位 组成的变量 ;
1 . 聚类简介 : 已知 原始的数据集 , 没有类标签 , 没有训练集 , 测试集 , 数据集所有属性已知 ; 设计聚类算法 , 根据聚类算法将数据集进行分组 ; ( 数据集 -> 聚类算法 -> 数据分组 )...
1 . 后向传播算法 : 针对每个数据样本 , 从输入层到输出层传播输入 , 这是向前传播输入 , 然后从输出层向输入层传播误差 , 这是向后传播误差 ;
1 . 后向传播误差 : 计算每层每个单元的误差 , 根据该误差更新 权值 和 偏置 设置 ;
② 连接方式 : 该网络结构中的连接方式是全连接方式 , 即每个节点都连接全部的相邻层的节点 ; ( 与之对应的是局部连接 )
① 感知器 : 感知器 对应有监督的学习方法 , 给出已知的训练集 , 学习过程中指导模型的训练 ;
1 . 神经网络组成 : 由 一组 连接的 输入 和 输出单元 组成 , 每个连接都有一个 权值 ( 系数 ) ;