文章目录一、 Apriori 算法过程二、 Apriori 算法示例参考博客 :【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则简介 | 数据集 与 事物 Transaction 概念 | 项 Item 概念 | 项集 Item Set | 频繁项集 | 示例解析 ...
文章目录一、 非频繁项集超集性质二、 频繁项集子集性质三、 项集与超集支持度性质参考博客 :【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则简介 | 数据集 与 事物 Transaction 概念 | 项 Item 概念 | 项集 Item...
文章目录一、 频繁项集二、 非频繁项集三、 强关联规则四、 弱关联规则五、 发现关联规则参考博客 :【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则简介 | 数据集 与 事物 Transaction 概念 | 项 Item 概念 | 项...
文章目录一、 置信度二、 置信度 示例参考博客 :【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则简介 | 数据集 与 事物 Transaction 概念 | 项 Item 概念 | 项集 Item Set | 频繁项集 | 示例解析 )【数据挖掘】关...
支持度 表示 数据项 ( Item ) 在 事务 ( Transaction ) 中的 出现频度 ;
如 : 购买商品时 , 啤酒 与 尿布 就有关联关系 , 这两个之间肯定没有因果关系 , 有一种未知的关联关系 ;
-邻域 内可能有多于 MinPts 个样本 , 但是我们只取其半径范围内 恰好 有 MinPts 样本的 半径值
③ 高斯分布参数 : 每个聚类分组的样本都是符合 高斯分布 的 , 根据样本可以得到其 高斯分布的参数 , 均值
模型结构已知 , 即 高斯混合模型 , 需要根据已知的数据样本 , 学习出模型的参数 ;
1 . 高斯混合模型 与 K-Means 相同点 : 高斯混合模型方法 与 K-Means 方法 , 都是通过多次迭代 , 每次迭代都对聚类结果进行改进 , 最终达到算法收敛 , 聚类分组结果达到最优 ;...