最新 最热

输入DStream和Receiver详解

输入DStream代表了来自数据源的输入数据流。在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream),代表了从netcat(nc)服务接收到的数据流。除了文件数据流之外,所有的输入DStream都会绑定一个Recei...

2023-02-25
0

Spark Streaming简介

Spark Streaming是Spark Core API的一种扩展,它可以用于进行大规模、高吞吐量、容错的实时数据流的处理。它支持从很多种数据源中读取数据,比如Kafka、Flume、Twitter、ZeroMQ、Kinesis或者是TCP Socket。并且能够使用...

2023-02-25
0

Spark Streaming大数据实时计算介绍

Spark Streaming,其实就是一种Spark提供的,对于大数据,进行实时计算的一种框架。它的底层,其实,也是基于我们之前讲解的Spark Core的。基本的计算模型,还是基于内存的大数据实时计算模型。而且,它的底层的组件,其实还是最核心...

2023-02-25
0

JDBC数据源

Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark sql提供的各种算子进行处理。 这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。...

2023-02-25
0

Hive数据源实战

Spark SQL支持对Hive中存储的数据进行读写。操作Hive中的数据时,必须创建HiveContext,而不是SQLContext。HiveContext继承自SQLContext,但是增加了在Hive元数据库中查找表,以及用HiveQL语法编写SQL的功能。除了sql()方法,H...

2023-02-25
0

合并元数据

如同ProtocolBuffer,Avro,Thrift一样,Parquet也是支持元数据合并的。用户可以在一开始就定义一个简单的元数据,然后随着业务需要,逐渐往元数据中添加更多的列。在这种情况下,用户可能会创建多个Parquet文件,有着多个不同的但...

2023-02-25
0

自动分区推断

表分区是一种常见的优化方式,比如Hive中就提供了表分区的特性。在一个分区表中,不同分区的数据通常存储在不同的目录中,分区列的值通常就包含在了分区目录的目录名中。Spark SQL中的Parquet数据源,支持自动根据目录名推断...

2023-02-25
0

Save Mode

Spark SQL对于save操作,提供了不同的save mode。主要用来处理,当目标位置,已经有数据时,应该如何处理。而且save操作并不会执行锁操作,并且不是原子的,因此是有一定风险出现脏数据的。...

2023-02-25
0

手动指定数据源类型

也可以手动指定用来操作的数据源类型。数据源通常需要使用其全限定名来指定,比如parquet是org.apache.spark.sql.parquet。但是Spark SQL内置了一些数据源类型,比如json,parquet,jdbc等等。实际上,通过这个功能,就可以在不...

2023-02-25
0

RDD转换为DataFrame

为什么要将RDD转换为DataFrame?因为这样的话,我们就可以直接针对HDFS等任何可以构建为RDD的数据,使用Spark SQL进行SQL查询了。这个功能是无比强大的。想象一下,针对HDFS中的数据,直接就可以使用SQL进行查询。...

2023-02-25
0