Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark sql提供的各种算子进行处理。 这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能涉及到要用Spark SQL反复查询Hive中的数据,来进行关联处理。 那么此时,用Spark SQL来通过JDBC数据源,加载MySQL中的数据,然后通过各种算子进行处理,是最好的选择。因为Spark是分布式的计算框架,对于1000万数据,肯定是分布式处理的。而如果你自己手工编写一个Java程序,那么不好意思,你只能分批次处理了,先处理2万条,再处理2万条,可能运行完你的Java程序,已经是几天以后的事情了。
JDBC数据源
2023-02-25 15:56:02
浏览数 (1)