图神经网络(Graph Neural Networks)已经成为分析和学习图结构数据的强大框架,推动了社交网络分析、推荐系统和生物网络分析等多个领域的进步。
利用ChatGPT实现零样本信息抽取(Information Extraction,IE),看到零样本就能大概明白这篇文章将以ChatGPT作为一个基座然后补全前后端,来实现抽取任务。主要针对抽取中的三个重要任务:...
清华大学,微软研究院共同发表了一篇论文,创造性地提出了TORA:在LLM之外使用推理智能体,结合自然语言分布推理,就能大幅提高研究LLM的数理能力和推理能力。...
由于 ChatGPT 和 GPT4 兴起,如何让人人都用上这种大模型,是目前 AI 领域最活跃的事情。当下开源的 LLM(Large language model)非常多,可谓是百模大战。面对诸多开源本地模型,根据自己的需求,选择适合自己的基座模型和参数量...
在这个不断变化的世界,当大型语言模型(LLM)遇到新知识还能给出正确答案吗?如何评估LLM应对新知识的能力呢?
场景效果和文字的要求几乎分毫不差——「平静如玻璃的湖面,倒映出无云的天空,周围的山和水鸟的倒影呈现在湖中。」
「任何认为自动回归式 LLM 已经接近人类水平的 AI,或者仅仅需要扩大规模就能达到人类水平的人,都必须读一读这个。AR-LLM 的推理和规划能力非常有限,要解决这个问题,并不是把它们变大、用更多数据进行训练就能解决的。」...
除了做LLM本身的技术,如何将LLM结合具体行业、结合具体产品进行落地,是很多公司在探索的。
最近,包括LeCun在内的一众大佬又开始针对LLM开炮了。最新的突破口是,LLM完全没有推理能力!
英伟达、宾大、加州理工、德州奥斯汀等机构的专家提出一个开放式Agent——Eureka,它是一个开放式Agent,为超人类水平的机器人灵巧性设计了奖励功能。...