最新 最热

LoRAShear:微软在LLM修剪和知识恢复方面的最新研究

LoRAShear是微软为优化语言模型模型(llm)和保存知识而开发的一种新方法。它可以进行结构性修剪,减少计算需求并提高效率。

2023-11-11
0

EMNLP2023 | LLM作用下的成分句法分析基础研究

自训练已被证明是一种有效的针对跨域任务的方法。传统的自训练方法依赖于有限且低质量的源语料库。为克服这一限制,本文提出用大型语言模型(LLM)增强自训练,以迭代地生成特定领域的语料库。并针对句法成分解析,引入了指...

2023-11-10
0

LangChain学习笔记——Model IO

LanChain基于为LangChain Model Application提供一下能力而设计:

2023-11-09
0

情感分析与LLMs角色扮演

就像人类在做一件事情的时候,可能需要尝试多次。LLM也是如此!这对于情感分析任务尤其如此,在情感分析任务中,LLM需要深入推理来处理输入中的复杂语言现象(例如,从句组成、反讽等),单个LLM生成的单回合输出可能无法提供完美的...

2023-11-09
0

从ID-based到LLM-based: 可迁移推荐系统研究进展总结

TLDR: 本文综述了近期关于可迁移推荐系统的发展现状,并分别介绍了基于ID、基于模态和基于大语言模型的可迁移推荐系统的代表性工作,最后对该方向进行了系统性的总结和展望。...

2023-11-07
1

宇宙尽头是「计算」!AI大佬Wolfram最新演讲:LLM自主在计算空间探索,奇点降临就是现在

近日,著名的英国科学家Stephen Wolfram在TED 18分钟的演讲中,分享了自己对这个问题的看法。

2023-11-07
0

让大模型自主探索开放世界,北大&智源提出训练框架LLaMA-Rider

大语言模型因其强大而通用的语言生成、理解能力,展现出了成为通用智能体的潜力。与此同时,在开放式的环境中探索、学习则是通用智能体的重要能力之一。因此,大语言模型如何适配开放世界是一个重要的研究问题。...

2023-11-07
0

GPT-4 做「世界模型」,让LLM从「错题」中学习,推理能力显著提升

这段时间,大语言模型在各种 NLP 任务中取得了重大进展,尤其是在需要复杂的思维链(CoT)推理的数学问题方面。

2023-11-07
0

从科幻走向现实,LLM Agent 做到哪一步了?

LLM 洪流滚滚,AI 浪潮席卷全球,在这不断冲击行业认知的一年中,Agent 以冉冉新星之态引起开发者侧目。OpenAI 科学家 Andrej Karpathy 曾言“OpenAI 在大模型领域快人一步,但在 Agent 领域,却是和大家处在同一起跑线上。”...

2023-11-06
1

LangChain:打造自己的LLM应用

导读随着LLM的技术发展,其在业务上的应用越来越关键,通过LangChain大大降低了LLM应用开发的门槛。本文通过介绍LangChain是什么,LangChain的核心组件以及LangChain在实际场景下的使用方式,希望帮助大家能快速上手LLM应用...

2023-11-05
0