在推理实验中,声称可以提高准确性的模型自我纠正,把正确率从16%「提高」到了1%!
虽然大型语言模型(LLM)在文本分析和生成任务上的性能非常强大,但在面对包含数字的问题时,比如多位数乘法,由于模型内部缺乏统一且完善的数字分词机制,会导致LLM无法理解数字的语义,从而胡编乱造答案。...
MIT,Meta AI,CMU的研究人员最近提出了一种StreamingLLM,声称可以使得经过有限序列长度训练的大型语言模型能够在无需任何微调的情况下,推广到无限序列长度的输入和输出。 不过这里值得强调的是,这个方法并没有增加LLM的对...
重排器(Reranker)作为信息检索的第二阶段,需要根据查询和文档的相关性,对候选文档做细粒度的排序。经典的重排方法一般使用交叉编码器,结合文档和查询的语义信息进行打分和排序。...
Google DeepMind 最近宣布了 Robotics Transformer 2(RT-2),这是一个用于控制机器人的视觉 - 语言 - 动作(VLA)的 AI 模型。RT-2 使用经过精调的 LLM 来输出运动控制命令。它可以执行训练数据中未明确包含的任务,并在新出现...
语言模型(LM)的训练经历两个关键阶段:首先,利用大量多样化的文本数据进行预训练;接着,对模型针对特定目标进行微调。尽管业界普遍认为预训练阶段是模型获取核心知识和技能的关键,而微调更偏重于调整和优化这些能力,这一观念却...
近年来,大语言模型(LLM)及其底层的 transformer 架构已经成为了对话式 AI 的基石,并催生了广泛的消费级和企业应用程序。尽管有了长足的进步,但 LLM 使用的固定长度的上下文窗口极大地限制了对长对话或长文档推理的适用性...
近日,OpenAI 研究科学家 Hyung Won Chung 在首尔国立大学做了题为「Large Language Models (in 2023)」的演讲。他在自己的 YouTube 频道上写到:「这是一次雄心勃勃的尝试,旨在总结我们这个爆炸性的领域。」...
大语言模型(Large Language Model,LLM)的进展促进了 AI 智能体(特别是 LLM 智能体)的蓬勃发展。在通往通用人工智能的道路上,AI 智能体将有能力在无人监管的情况下进行自主思考与决策。然而,较少有研究者关注如何在未来无人...
今日,NVIDIA 正式宣布一项令人振奋的消息:TensorRT-LLM(大型语言模型加速器)正式开源!这是一个重大突破,将为那些想要在NVIDIA GPU上加速和优化最新LLMs的推理性能的人们带来福音。让我们一起深入了解这个激动人心的开源项...