最新 最热

深度学习+符号表征=强大的多任务通用表征,DeepMind新论文可能开启AI新时代

AI 科技评论按:在深度神经网络大行其道的现在,虽然大家总说要改善深度学习的可解释性、任务专一性等问题,但是大多数研究论文在这些方面的努力仍然只像是隔靴搔痒。而且,越是新的、具有良好表现的模型,我们在为模型表现感...

2019-06-15
0

观点 | 深度学习+符号表征=强大的多任务通用表征,DeepMind新论文可能开启AI新时代

AI 科技评论按:在深度神经网络大行其道的现在,虽然大家总说要改善深度学习的可解释性、任务专一性等问题,但是大多数研究论文在这些方面的努力仍然只像是隔靴搔痒。而且,越是新的、具有良好表现的模型,我们在为模型表现感...

2019-06-14
0

【干货】NLP中的迁移学习教程来啦!(238页PPT下载)

经典的监督机器学习范式是基于对使用单个数据集的任务的单个预测模型的孤立学习。这种方法需要大量的训练示例,并且对于定义明确、范围狭窄的任务效果最好。迁移学习指的是一组方法,这些方法通过利用来自其他域或任务的...

2019-06-10
0

PaddlePaddle升级解读 | 十余行代码完成迁移学习,PaddleHub实战篇

迁移学习 (Transfer Learning) 是属于深度学习的一个子研究领域,该研究领域的目标在于利用数据、任务、或模型之间的相似性,将在旧领域学习过的知识,迁移应用于新领域中。迁移学习吸引了很多研究者投身其中,因为它能够很...

2019-06-06
0

如何入手卷积神经网络

从 Alex Krizhevsky 及其朋友通过 ImageNet 公布这项技术至今,不过才七年。ImageNet 是一个大规模图像识别竞赛,每年都会举办,识别种类达 1000 多种,从阿拉斯加雪橇犬到厕纸应用尽有。之后,他们又创建了 AlexNet,获得了 Ima...

2019-06-05
0

每类13张标注图就可从头学分类器,DeepMind新半监督模型超越AlexNet

DeepMind 近期的一项研究利用对比预测编码(Contrastive Predictive Coding,CPC)来解决这一难题,该方法是一种从静止图像中抽取稳定结构的无监督方法。得到的结果是一种表征,使用该表征和简单的线性分类器在 ImageNet 上可...

2019-06-05
1

如何入手卷积神经网络

从 Alex Krizhevsky 及其朋友通过 ImageNet 公布这项技术至今,不过才七年。ImageNet 是一个大规模图像识别竞赛,每年都会举办,识别种类达 1000 多种,从阿拉斯加雪橇犬到厕纸应用尽有。之后,他们又创建了 AlexNet,获得了 Ima...

2019-06-05
0

深度学习不得不会的迁移学习(Transfer Learning)

在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型;然后利用这个学习到的模型来对测试文档进行分类与预测。然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:...

2019-06-02
0

结合符号主义和深度学习,DeepMind提出新型端到端神经网络架构 PrediNet

符号主义和连接主义是人工智能领域中的两大流派。符号主义(Symbolism)是一种基于逻辑推理的智能模拟方法,又称为逻辑主义 (Logicism)、心理学派 (Psychlogism) 或计算机学派 (Computerism),其原理主要为物理符号系统(即符...

2019-06-02
0

如何优化你的图像分类模型效果?

图像分类是一个认为几乎解决了的问题。有趣的是,你必须竭尽所能来提升额外的1%的准确率。当我参加“ Intel Scene Classification Challenge hosted by Analytics Vidhya(由Analytics Vidhya主办的英特尔场景分类挑战)...

2019-05-29
0