迁移学习是Google、Salesforce、IBM和Azure云服务商提供的托管AutoML服务的基础。它现在在最新的NLP研究中占据突出的地位——包括谷歌的BERT以及ULMFIT中有重要的作用。...
美国人工智能年会(the Association for the Advance of Artificial Intelligence),简称AAAI,是人工智能领域的顶级国际会议。会议由AAAI协会主办,今年是第33届,于1月27日-2月1日在美国夏威夷举行。腾讯AI Lab第2次参与会议,...
AI 科技评论按:香港科技大学讲席教授、微众银行首席人工智能官(CAIO)杨强教授是机器学习领域内活动积极的学者,也是大家非常熟悉的机器学习研究人员之一。...
【导读】文本基于深度学习和迁移学习方法,对疟疾等传染病检测问题进行了研究。作者对疟疾的检测原理以及迁移学习理论进行了介绍,并使用VGG-19预训练模型,进行了基于特征提取和基于参数微调的迁移学习实践。...
迁移学习 (Transfer Learning) 是属于深度学习的一个子研究领域,该研究领域的目标在于利用数据、任务、或模型之间的相似性,将在旧领域学习过的知识,迁移应用于新领域中。迁移学习吸引了很多研究者投身其中,因为它能够很...
近年来,机器学习对现实世界的影响与日俱增。在很大程度上,这是由于各种各样的深度学习模型的出现,使得从业人员可以在不需要任何手动操作特征工程的情况下,就可以在对比基准数据集上获得目前最佳分数。现在我们可以使用像...
随着人工智能技术的研究迈过了初期的野蛮生长,走进深水区。如何充分利用人工标注信息、减小标注工作量、将人类经验与学习规则充分结合成为了急需解决的关键问题!本文结合斯坦福 AI 实验室在弱监督学习领域的研究进展、...
近日,在百大人物峰会上,创新工场创始人李开复谈及数据隐私保护和监管问题时,表示:“人们不应该只将人工智能带来的隐私问题视为一个监管问题,可尝试用‘以子之矛攻己之盾’——用更好的技术解决技术带来的挑战,例如同态加密...
迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块。而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本...
前面写了对话系统中的SLU之领域分类和意图识别、槽填充、上下文LU和结构化LU、对话状态追踪(DST)、以及NLG,今天更新任务型对话系统中的DPL。DPL也叫DPO(对话策略优化),跟DST一样,DPL也是对话管理(DM)的一部分,而DM是任务型对话...