「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方。其中多元共线性这个问题将贯穿所有的机器学习模型,所以本文会「将原理知识穿插于代码段中」,争取以不一...
回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。本文简单的介绍一下多元线性回归。
回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。本文简单的介绍一下简单线性回归。
广义线性回归是一类常用的统计模型,在各个领域都有着广泛的应用。今天我会以逻辑回归和泊松回归为例,讲解如何在R语言中建立广义线性模型。
先回顾一下线性回归模型的成立的四个条件(LINE):
问题是,当我们从线性模型引入Poisson回归时,我们改变了两件事。因此,让我们看看当我们分别更改两个组件时会发生什么。首先,我们可以使用高斯模型来更改链接函数,但是这次是乘法模型(具有对数链接函数)...
我不能在广义线性模型中使用双变量样条,但是考虑到广义可加模型(现在绝对不是可加模型),它确实可以工作。更准确地说,投资组合的分布是这两个协变量的函数,如下所示...
在上一篇文章中,我们没有查看数据。如果我们查看单个损失的分布,那么在数据集中,我们会看到以下内容:
对于我们40岁的驾驶员的年化索赔频率的预测现在为7.74%(比我们之前的7.28%略高)
写在前面: 这篇文章将通过线性回归模型预测汽车的燃油效率,文本所用到的数据以及代码可根据文末的联系方式向我索取