最新 最热

ECCV 2018 | 腾讯AI lab & 复旦大学合作提出无监督高分辨率的图像到图像转换方法SCAN

作者:Minjun Li,Haozhi Huang,Lin Ma, Wei Liu, Tong Zhang, Yu-Gang Jiang

2018-09-20
0

资源 | 给卷积神经网络“修理工”的一份“说明书”

这篇文章的主要内容来自作者的自身经验和一些在线资源(如最出名的斯坦福大学的CS231n课程讲义),是关于如何调试卷积神经网络从而提升其性能的。...

2018-09-20
0

业界 | 如何成为一名数据科学家?听听来自Netfix的老司机怎么说

数据科学是什么?数据分析?机器学习?还是数据工程?答案可能有很多,但也许只有直接与某个公司的数据科学家交流,才能了解该公司是如何看待数据科学的。由Netflix举办的第三届聚焦数据科学的WiBD研讨会,为我们所有人了解Netflix...

2018-09-20
0

新手入门机器学习十大算法

【磐创AI导读】:对于想要了解机器学习的新手,本文为大家总结了数据科学家最经常使用的十大机器学习算法来帮助大家快速入门。如果喜欢我们的文章,欢迎点赞、评论、转发到朋友圈~想要获取更多的机器学习、深度学习资源,欢...

2018-09-20
0

【斯坦福CS229】一文横扫机器学习要点:监督学习、无监督学习、深度学习

【磐创AI导读】:提及机器学习,很多人会推荐斯坦福CSS 229。本文便对该课程做了系统的整理。包括监督学习、非监督学习以及深度学习。可谓是是学习ML的“掌上备忘录”。想要学习更多的机器学习、深度学习知识,欢迎大家点...

2018-09-20
1

《Scikit-Learn与TensorFlow机器学习实用指南》 第3章 分类

在第一章我们提到过最常用的监督学习任务是回归(用于预测某个值)和分类(预测某个类别)。在第二章我们探索了一个回归任务:预测房价。我们使用了多种算法,诸如线性回归,决策树,和随机森林(这个将会在后面的章节更详细地讨论)。现...

2018-09-19
1

机器学习中的目标函数总结

几乎所有的机器学习算法最后都归结为求解最优化问题,以达到我们想让算法达到的目标。为了完成某一目标,需要构造出一个“目标函数”来,然后让该函数取极大值或极小值,从而得到机器学习算法的模型参数。如何构造出一个合理...

2018-09-17
1

朴素贝叶斯算法文本分类原理

贝叶斯方法把计算“具有某特征的条件下属于某类”的概率转换成需要计算“属于某类的条件下具有某特征”的概率,属于有监督学习。

2018-09-17
1

独家 | 全解用Python建立能源市场算法交易的机器学习框架(附链接)

人工智能的新突破每天都成为头条新闻。在金融领域,机器学习的广泛运用和强大的应用,客户们并不了解。事实上,很少有像金融行业那样具有深厚历史、清楚明了和结构化数据的领域——这使得它成为了“学习机器”的一个早期标...

2018-09-17
0

【机器学习】--EM算法从初识到应用

EM算法是一种解决存在隐含变量优化问题的有效方法。EM算法是期望极大(Expectation Maximization)算法的简称,EM算法是一种迭代型的算法,在每一次的迭代过程中,主要分为两步:即求期望(Expectation)步骤和最大化(Maximizati...

2018-09-13
0