最新 最热

机器学习算法①

这个算法由一个目标/结果变量(或因变量)组成,这个变量可以从一组给定的预测变量(独立变量)中预测出来。 使用这些变量,我们生成一个将输入映射到所需输出的函数。 训练过程一直持续到模型达到训练数据所需的准确度。 监督学...

2018-08-27
1

监督式和非监督式机器学习算法

监督式学习指的是你拥有一个输入变量和一个输出变量,使用某种算法去学习从输入到输出的映射函数

2018-08-27
1

总结:为什么要选择机器学习

场景1:如果在电商平台中入驻的商家想要卖出更多的东西就需要电商平台帮住通过push、短信甚至邮件的方式引流,提醒存在潜在购买可能的用户“来来来这家店不错”,通过这种方式的收费其实是空手套白狼,投入产出比巨高那如何...

2018-08-27
0

提升有监督学习效果的实战解析

之前写过销售预估算法,但是被诸多大佬吐槽有监督学习部分毫无深度,其实我是想写给一些刚入门的朋友看的,这边我boss最近也想让我总结一些相对"上档次"的一点的东西,我做了一些稍微深入一点的总结,希望能够给新人朋友有稍...

2018-08-27
0

机器学习中的最优化算法总结

对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,SIGAI将对机器学习中所使用的优化算法...

2018-08-24
1

如何用机器学习处理二元分类任务?

图像是猫还是狗?情感是正还是负?贷还是不贷?这些问题,该如何使用合适的机器学习模型来解决呢?

2018-08-22
0

科普 | 贝叶斯概率模型一览

机器学习狭义上是指代统计机器学习,如图 1 所示,统计学习根据任务类型可以分为监督学习、半监督学习、无监督学习、增强学习等。

2018-08-22
1

学界 | 顶会见闻系列:ICML 2018(下),能量、GAN、监督学习、神经网络

AI 科技评论按:本篇属于「顶会见闻系列」。每年这么多精彩的人工智能/机器学习会议,没去现场的自然可惜,在现场的也容易看花眼。那么事后看看别的研究员的见闻总结,也许会有新的收获呢。...

2018-08-21
0

深度学习简介及单词的向量化表示

首先应当明确的是,深度学习是机器学习中的一个领域。然而与传统机器学习所不同的是,传统的机器学习的重点在于特征的设计。在设计过特征之后,就变成了研究如何调整权重、优化参数来得到一个最优的结果。...

2018-08-21
0

当我们说数据挖掘的时候我们在说什么

现在市面上谈论到的数据挖掘基本上都是基于统计学习的监督学习或非监督学习问题。尤其以监督学习应用面更广。

2018-08-16
0