本文是一篇关于特征工程的总结类文章,如有不足之处或理解有偏差的地方,还望大家多多指点。
数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。使用sklearn工具可以方便地进行特征工程和模型训练工作,在《使用sklearn做单机特征工程》中,我们最后留下了一些疑问:特征处理类都有三个方法fit、tra...
有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过...
这句话,说起来很简单,看起来也很容易,但真的是这样吗?我列举几点,扩展一下上面这句话:1、label符合业务场景吗?label准确吗?能够校准吗?放在哪张表里,怎么正确关联特征?2、特征合理吗?预处理流程正确吗?有效吗?特征会泄露标签信息吗...
前阵子看到一篇文章,学习了一段时间的机器学习算法后,再回头看机器学习问题,发现要想利用机器学习去很好的求解一个问题,其实并不是一件容易办到的事情,尤其是能够对整个模型的解释方面,要想能够对模型很好的解释,那么难度就...
2018年12月31日,美团酒店单日入住间夜突破200万,再次创下行业的新纪录,而酒店搜索在其中起到了非常重要的作用。本文会首先介绍一下酒店搜索的业务特点,作为O2O搜索的一种,酒店搜索和传统的搜索排序相比存在很大的不同。第...
可以用于形成特征矩阵的共有5个表: 1.用户基本属性表 2.银行流水记录表 3.用户浏览行为表 4.信用卡账单记录表 5.放款时间信息表
目录1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺失值计算 2.5 ...
本文介绍了CTR预估中LR、GBDT、FTRL、DeepFM等算法,以及它们在不同场景下的应用和优缺点。