2021年11月,来自哈佛医学院波士顿儿童医院的Sheng He和麻省综合医院的Yanfang Feng等人,在药学顶尖杂志Adv Drug Deliver Rev(药物递送领域,2020年影响因子15.47)发表综述,整理和分析了AI在传染病药物递送方面的现状、挑战...
通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维...
谷歌大脑-Ventilator Pressure Prediction金牌方案分享
时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。...
最近一直在做文档识别与文档比对,总体上是先用OCR模型识别出文本行,每个文本行使用一个box来表示(box就是一个矩形,使用左上角和右下角的坐标来表示),但是文字检测模型出来的效果并不是很理想,类似下面的情况并不少见:...
在实践中,特征工程目前依然是建模过程中最为核心的一块,也是提升最快最简单的部分;有些公司的搜索推荐团队只使用了embedding相关的信息,并希望通过embedding的交叉或者序列等信息建模得到最终的推荐结果,并没有加入非常多...
在上篇特征选择与提取最全总结之过滤法中已经介绍了特征选择的其中一大方法--过滤法。本篇将继续介绍特征选择与特征提取方法,其主要内容如下所示。...
机器学习中的一个经典理论是:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。也正因如此,特征工程在机器学习流程中占有着重要地位。广义的特征工程一般可分为三个环节:特征提取、特征选择、特征衍生,三个...
特征工程:决定了模型的精度上限。是数据挖掘的主要工作内容:数据清洗、数据预处理、数据转换。
本文主要介绍CS224W的第七课,图的表征学习,这里的表征类似于NLP里的word embedding。上一节课讲了图的信息传输和节点分类,节点的类别由节点自身的特征和邻居节点的类别所决定,但节点自身的特征通常依赖于人工干预的特征...