AIOps领域关于指标、日志和trace数据的异常检测与定位的研究工作很多,这些工作中的异常更多是时序指标上的表现异常,与真实的故障相距甚远,真实的故障是极其稀疏的,与运维工作人员每天接受到的异常检测算法识别出来的告警...
从实习到工作,接触过一些大大小小的广告系统,有麻雀虽小但五脏俱全的小 dsp,也有把 ssp、adx、dsp 都打包了的大媒体 ,算是对业界的广告系统有了一个初步的了解。趁着放假这几天,简单地梳理一下当前了解到的广告系统知识,主...
Not all memories are created equal: learning to forget by expiring
分享人:宋凯 博士 整理者:林宜蓁 导读: 本文从广告主的角度,分享联邦学习实践的经验跟思考。 先介绍业务与技术选型背景:团队项目为用户增长及成本控制,方式为广告渠道投放,投放目标分为拉新、拉活两类。 拉新时,微视侧端内...
在我的上一篇博客“什么是嵌入,你能用它做什么”中,我谈到了嵌入可以把高维、非结构化的数据转换成低维的数值表示,可以用在各种机器学习模型中。...
说起"炼丹"最耗时的几件事,首先就能想到的就是数据清洗,特征工程,还有调参.特征工程真的是老生常谈了,但是特征工程又是最重要的一环,这一步做不好怎么调参也没用.在特征工程中,做特征缩放是非常重要的,如下图所示:...
神经网络类似于人类的神经细胞,电信号在神经元上传递,类似于数值在神经网络中传递的过程。
♥各位如果想要交流的话,可以加下QQ交流群:974178910,里面有各种你想要的学习资料。♥
这篇文章是airbnb团队在KDD2019上的一篇文章。在当时来看,GBDT的模型已经对他们的业务有了一定的贡献,这篇文章主要是在讲,该团队在尝试使用NN模型来做进一步的迭代。...
从事机器学习相关岗位的同学都知道这样一句话:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。在数据确定的情况下,那么特征工程就成了唯一可供发挥的关键步骤。广义来讲,特征工程包括特征提取、特征衍生...