来自Amazon,google,Meta, Microsoft等的面试问题,问题很多所以对问题进行了分类整理,本文包含基础知识和数据分析相关问题
在本篇文章中,我们将讨论机器学习和深度学习的不同领域中的一个热门话题:零样本和少样本学习(Zero and Few Shot learning),它们在自然语言处理到计算机视觉中都有不同的应用场景。...
Yuya Yamamoto, Juhan Nam, Hiroko Terasawa
人类能够从经验中学习,并随着更多的经验和更多的数据,从而更出色地完成自己的任务。其中,有一个重要的问题是:我们是否可以将学习的过程自动化?这正是机器学习科学所要做的。机器学习是允许机器从数据和经验中学习的一项技...
在以前的文章中,我们讨论过Transformer并不适合时间序列预测任务。为了解决这个问题Google创建了Hybrid Transformer-LSTM模型,该模型可以实现SOTA导致时间序列预测任务。...
深度图像分类模型通常以监督方式在大型带注释数据集上进行训练。随着更多带注释的数据加入到训练中,模型的性能会提高,但用于监督学习的大规模数据集的标注成本时非常高的,需要专家注释者花费大量时间。为了解决这个问题...
人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。这些收集信息的传感器包括加速...
五年前深度学习的一切都是关于如何构建新的、更优化的模型,以便更好地从非结构化数据中学习。这些努力带来了许多研究突破,突破了神经网络的可能性。但慢慢地越来越多的人对这种方法提出了批评,并建议首先关注数据的质量...
深度学习模型的可解释性为其预测提供了人类可以理解的推理。如果不解释预测背后的原因,深度学习算法就像黑匣子,对于一些场景说是无法被信任的。不提供预测的原因也会阻止深度学习算法在涉及跨域公平、隐私和安全的关键...
Wesley J. Maddox, Andres Potapczynski, Andrew Gordon Wilson