最新 最热

《统计学习方法》读书笔记

【第1章】 统计学习方法概论 【第2章】 感知机 【第3章】 k 近邻法 【第4章】 朴素贝叶斯法 【第5章】 决策树 【第6章】 逻辑斯谛回归与最大熵模型 【第7章】 支持向量机 【第8章】 提升方法 【第9章】 EM算法及其推...

2018-09-26
0

博客 | 「特征工程」与「表示学习」

当我们学习一个复杂概念时,总想有一条捷径可以化繁为简。机器学习模型也不例外,如果有经过提炼的对于原始数据的更好表达,往往可以使得后续任务事倍功半。这也是表示学习的基本思路,即找到对于原始数据更好的表达,以方便后...

2018-09-25
0

如何为你的机器学习问题选择合适的算法?

随着机器学习越来越流行,也出现了越来越多能很好地处理任务的算法。但是,你不可能预先知道哪个算法对你的问题是最优的。如果你有足够的时间,你可以尝试所有的算法来找出最优的算法。本文介绍了如何依靠已有的方法(模型选...

2018-09-25
0

【斯坦福CS229】一文横扫机器学习要点:监督学习、无监督学习、深度学习

给定一组与输出{y(1),...,y(m)}相关联的数据点{x(1),...,x(m)},我们希望构建一个能够根据x值预测y值的分类器。

2018-09-25
0

资源 | 源自斯坦福CS229,机器学习备忘录在集结

项目地址:https://github.com/afshinea/stanford-cs-229-machine-learning

2018-09-20
0

学界 | 最大化互信息来学习深度表示,Bengio等提出Deep INFOMAX

在意识层面上,智能体并不在像素和其他传感器的层面上进行预测和规划,而是在抽象层面上进行预测。因为语义相关的比特数量(在语音中,例如音素、说话者的身份、韵律等)只是原始信号中总比特数的一小部分,所以这样可能更合适。...

2018-09-20
0

【斯坦福CS229】一文横扫机器学习要点:监督学习、无监督学习、深度学习

【磐创AI导读】:提及机器学习,很多人会推荐斯坦福CSS 229。本文便对该课程做了系统的整理。包括监督学习、非监督学习以及深度学习。可谓是是学习ML的“掌上备忘录”。想要学习更多的机器学习、深度学习知识,欢迎大家点...

2018-09-20
0

机器学习中的目标函数总结

几乎所有的机器学习算法最后都归结为求解最优化问题,以达到我们想让算法达到的目标。为了完成某一目标,需要构造出一个“目标函数”来,然后让该函数取极大值或极小值,从而得到机器学习算法的模型参数。如何构造出一个合理...

2018-09-17
0

机器学习之线性回归

分类算法:对于x1,x2,x3,x4作为特征值,当输入到算法中得出有限个结果。比如对于银行借钱,输入年龄,性别,信誉等值 银行反馈借款或者不借款为分类指标。...

2018-09-13
0

机器学习课程笔记(一)

一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当有了经验E后,经过P评判,程序在处理T时的性能有所提升。

2018-09-12
0