在IJCAI-2019期间举办的腾讯TAIC晚宴和Booth Talk中,来自TEG数据平台的张长旺向大家介绍了自己所在用户画像组的前沿科研结果:1. 非监督短文本层级分类;2. 大规模复杂网络挖掘和图表示学习。其所在团队积极与学术界科研...
无监督学习是指从无标注数据中学习模型的机器学习问题。无标注数据是自然得到的数据,模型表示数据的类别、转换或概率无监督学习的本质是学习数据中的统计规律或潜在结构,主要包括聚类、降维、概率估计。...
上文讲述了机器学习的功能和神经网络的概念,以及简要介绍了感知器和卷积神经网络,接下来继续介绍另外6种神经网络架构。
机器学习一直是一个火热的研究领域,深度学习方法的提出又为这个领域添了一把火,使得很多人对该领域感兴趣并想投身于该领域的研究之中。那么,对于想从事机器学习领域的人来说,有哪些是应该首先了解的内容呢?本文将简单的介...
Chethan Pandarinath是佐治亚理工学院的生物医学工程师,他想帮助瘫痪病人操作机械臂,让他们也能像正常人那样抓取目标。要解决这个问题,首先要识别神经系统中发出的和“移动手臂”相关的电信号,尤其是大脑中的电信号,再将...
【导读】作者用超过1.2万字的篇幅,总结了自己学习机器学习过程中遇到知识点。“入门后,才知道机器学习的魅力与可怕。”希望正在阅读本文的你,也能在机器学习上学有所成。...
注:本篇和后续各篇关于机器学习(不含深度学习)的内容,都有参考《Machine Learning in Action》(中文翻译版《机器学习实战》)这本书。
线性判别分析(Linear Discriminant Analysis, LDA)是一种监督学习的降维方法,也就是说数据集的每个样本是有类别输出。和之前介绍的机器学习降维之主成分分析(PCA)方法不同,PCA是不考虑样本类别输出的无监督学习方法。L...
李宏毅老师现任台湾大学电气工程助理教授,研究重点是机器学习,特别是深度学习领域。他有一系列公开的机器学习课程视频,在机器学习领域是很多人入门的教材,人气不输吴恩达的 Coursera 机器学习课程。...