数据仓库 ( Data Warehousing ) 和 联机分析处理 ( OLAP ) 技术 简介 :
组成的 完整的 “数据环境” ; 并在该 “数据环境” 上建立 和 进行 企业 或 组织 的从
缺点 : 很多数据库中的属性字段中 , 没有 “时标” 字段 , 此时就无法进行数据追加 ;
根据 “数据综合程度” 划分粒度 : “粒度” 是对 数据仓库 中的数据 的 综合程度高低 进行的度量 ;
详情参考 : 【DBMS 数据库管理系统】数据仓库 ( 数据仓库简介 | 操作型数据与分析性数据对比 | 数据仓库特征 | 特征一 : 面向主题组织数据 | 面向应用 | ) 四、特征一 : 面向主题 数据组织方式...
数据仓库 与操作系统分离 , 基于标准的企业模型集成 , 带时间属性 , 面向主题 , 不可更新 的 数据集合 ;
在数据仓库出现之前 , 上述两种处理类型都放在数据库中进行处理 , 其中分析性处理效果不好 , 因此提出不同的数据类型 , 放在不同的数据载体中 :
① 海量数据 : 自动化的数据收集工具 和 成熟的数据库技术 , 积累了海量数据 ;
在【rainbowzhou 面试3/101】技术提问--大数据测试是什么,你如何测?中,我提到了大数据的测试还有一类,即对大数据应用产品的测试。大数据应用产品常见的有BI报表、用户画像系统、数据挖掘平台等,今天就聊聊关于用户画像的...
随着数据量不断增长和业务复杂度逐渐攀升,数据处理效率面临巨大挑战。最典型的表现是面向分析型场景的数据仓库性能问题越来越突出,压力大、性能低,查询时间长甚至查不出来,跑批跑不完造成生产事故等问题时有发生。当数据...