已有的基于深度学习的行人再辨识方法主要关注单张图的特征学习,其训练好的模型是固定的,在面对没见过的场景时缺乏自适应性。为此,迁移学习被大量地研究并用于增强模型在新场景下的适应性,但其代价是针对特定场景的应用需...
Geoffrey Hinton 是谷歌副总裁、工程研究员,也是 Vector Institute 的首席科学顾问、多伦多大学 Emeritus 荣誉教授。2018 年,他与 Yoshua Bengio、Yann LeCun 因对深度学习领域做出的巨大贡献而共同获得图灵奖。...
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功,并成为机器学习领域的“常青树”,受到学术界和产业界的广泛关注。...
这篇文章调查了大量(两百篇以上)的相关文献资料,对NLP领域中深度学习的技术和应用层面进行了综述与讨论,非常适合于想要快速了解该领域整体概貌的研究者。...
上次的文章《入门感知机:一种二分类模型》中我们讲述了感知机的背景、模型定义、学习策略。
可以说模型、策略和算法是统计学习的三个重要因素,确定了三个要素也就确定了整个方法。也就是说建模的基本框架就定下来了。
利用one-shot视觉概念学习实现对话游戏中的交互式语言学习作者:Haichao Zhang, Haonan Yu, and Wei Xu全文下载,公众号回复:20180515作者简介第一作
作者:Maruan Al-Shedivat, Trapit Bansal, Yura Burda等
Yann LeCun,生于1960年,是一位机器学习、计算机视觉、机器人、计算神经科学领域的计算机科学家。他被大家所熟知的是在非光学字符识别和利用卷积神经网络(CNN)实现计算视觉方面的工作,是CNN之父。他也是DjVu图像压缩技术的...
性能提升的力度按上表的顺序从上到下依次递减。举个例子,新的建模方法或者更多的数据带来的效果提升往往好于调出最优的参数。但这并不是绝对的,只是大多数情况下如此。...