随着信息技术的不断发展,药物设计方法学的新概念、新方法和新思路持续更新,药物发现范式也与时俱进。人工智能作为新工具,已应用于药物发现过程的多个方面,引起了制药行业的高度关注,也带来了对药物发现科学理论和方法学的...
深度学习(DL)在应用于自然图像分析时非常成功。相比之下,将其用于神经影像学数据分析时则存在一些独特的挑战,包括更高的维度、更小的样本量、多种异质模态以及有限的真实标签(ground truth)。在本文中结合神经影像学领域...
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优...
继上次的生物学家掌握机器学习指南系列,又来继续更新啦。今天会和大家继续更新关于人工神经网络(artifical neural networks)的相关内容。
对鸟类群体的持续观测和保护一直是相关保护区工作的重中之重,但是由于保护区面积大、范围广,依靠传统的鸟类人工调查难以实现高效的对鸟类重要栖息地的连续监测,无法及时发现鸟类变化情况,随着AI识别技术的发展,利用其时效...
刚教大三学生学习深度学习的时候,学生们对卷积神经网络还比较模糊,后来我做了一个卷积神经网络课件,带很多动画,把卷积神经网络讲得比较清楚,有兴趣的同学可以看看。文末提供原版的ppt的下载方式,ppt效果见下图:...
在本文中提出了一种新的Large Kernel Attention(LKA)模块,以使self-attention的自适应和长距离相关,同时避免了上述问题。作者进一步介绍了一种基于LKA的新的神经网络,即视觉注意力网络(VAN)。VAN非常简单和高效,并在图像...
卷积神经网络已经在一些与计算机视觉相关的任务上取得了相当不错的结果,如图像分类和目标检测。这种成功可以用卷积神经元的工作原理来解释:它根据图像的空间属性来突出给定的特征。浅层网络注意是归纳一些形状或者纹理...
来源:专知本文为课程,建议阅读5分钟想学习深度卷积神经网络的同学不可错过! 李飞飞老师的CS231N课程《卷积神经网络视觉识别》被奉为经典,最新2022季3月29号开始了!众多想学习深度卷积神经网络的同学,可不能错过! 地址: http...
作者:Nicholas Indorf翻译:Gabriel Ng校对:zrx本文约10000字,建议阅读13分钟项目中收集并使用了 Spotify 数据库中最近发布的hip-hop曲目的音频预览样本和相关的流行度分数。 摘要 在这个项目里面,我想构建一个工具来帮助...