腾讯云开发者社区是腾讯云官方开发者社区,致力于打造开发者的技术分享型社区。提供专栏,问答,沙龙等产品和服务,汇聚海量精品云计算使用和开发经验,致力于帮助开发者快速成长与发展,营造开放的云计算技术生态圈。...
3.初始化:先把dp[0] = 0; dp[1] = dp[2] = 1; 初始化好就不会越界。
总结:状态转移方程dp[i] = Math.min (dp[i-1] + cos[i-1], dp[i-2] + cost[i-2])
动态规划(Dynamic Programming,简称 DP)是一种在数学、管理科学、计算机科学和经济学中用于求解决策过程最优化的数学方法。它通过将复杂问题分解成简单的子问题来解决,通过保存子问题的解,避免重复计算,从而提高效率。...
个人主页:摆烂小白敲代码 创作领域:算法、C/C++ 持续更新算法领域的文章,让博主在您的算法之路上祝您一臂之力 欢迎各位大佬莅临我的博客,您的关注、点赞、收藏、评论是我持续创作最大的动力...
有一个长度为 n 的 01 串,其中有一些位置标记为 ?,这些位置上可以任意填充 0 或者 1,请问如何填充这些位置使得这个 01 串中出现互不重叠的 0 和 1 子串最多,输出子串个数。...
对于一个长度为 K 的整数数列:A1,A2,...,AK我们称之为接龙数列当且仅当 Ai 的首位数字恰好等于 Ai−1 的末位数字 (2≤i≤K)。
二维费用背包呢,编者感觉是二重01背包的进化体,之前我们讨论的都是只有一个限定背包容量,比如在背包容量为V所能获得的价值,现在二维费用背包就是又加上了重量,比如背包容量为V且背包重量不能超过为M所能获得的价值。...
混合背包问题是背包问题的另一种变体,结合了0/1背包、多重背包和完全背包的特点。在混合背包问题中,每种物品可以选择放入背包的次数是有限的,而且也可以选择放入的数量是无限的。 问题的描述如下: 给定一个背包容量为m,有...
完全背包问题呢,见名知意,就是所谓的物品无限多,选也选不完的那种,是多重背包的promax版本。完全背包问题是背包问题的一种变体,与0/1背包问题有所不同。在完全背包问题中,每种物品的数量是无限的,可以选择任意数量的某一种...