Interpretability (of a DNN) is the ability to provide explanations in understandable terms to a human. F Doshi-Velez & B Kim, 2017
不同于逻辑回归把所有因素加权求和然后通过Sigmoid函数转换成概率进行决策,我们会依次判断各个特征是否满足预设条件,得到最终的决策结果。例如,在购物时,我们会依次判断价格、品牌、口碑等是否满足要求,从而决定是否购买...
反事实推理是可解释性的一般范式。它是关于确定我们需要对输入数据应用哪些最小更改,以便分类模型将其分类到另一个类中。
源码分享及数据集分享:https://github.com/luo948521848/BigDatas
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它...
这个数据集可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病。...
今天分享下这两篇,看看两位“过来人”博士,对于读博的看法。相信大家无论读博与否,都会有所启发。
随着时间的推移,学习模型变得越来越复杂,很难直观地分析它们。人们经常听说机器学习模型是"黑匣子",从某种意义上说,它们可以做出很好的预测,但我们无法理解这些预测背后的逻辑。这种说法是正确的,因为大多数数据科学家发现...
【导读】:全面介绍机器学习发展的历史,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning。
我在Twitter上偶然遇到了chefboost,因为我之前从未听说过它,所以我决定快速查看并测试它。在本文中,我将简要介绍这个库,并提到它与常用库scikit-learn的主要区别,并展示一个在实践中使用chefboost的快速示例。...