Boosting 是一种松散的策略,它将多个简单模型组合成一个复合模型。这个想法的理论来自于随着我们引入更多的简单模型,整个模型会变得越来越强大。在 boosting 中,简单模型称为弱模型或弱学习器。在回归的背景下,第一个简...
机器学习是该行业的一个创新且重要的领域。我们为机器学习程序选择的算法类型,取决于我们想要实现的目标。
决策树模型因为其特征预处理简单、易于集成学习、良好的拟合能力及解释性,是应用最广泛的机器学习模型之一。
这是知乎上一个问题:k近邻、贝叶斯、决策树、svm、逻辑斯蒂回归和最大熵模型、隐马尔科夫、条件随机场、adaboost、em 这些在一般工作中分别用到的频率多大?一般用途是什么?需要注意什么?...
1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。...
XGBOOST:简单来说是集成了很多个基学习器(如Cart决策树)的模型。它是集成学习的串行方式(boosting)的一种经典实现,是广泛应用在工业、竞赛上的一大神器。...
breast-cancer-wisconsin.mclear all;close all;clc; dataset = load('breast-cancer-wisconsin.data'); train = dataset(:,1:10); class = dataset(:,11); cl...
①随机搜索算法②模拟退火算法③TPE算法来对某个算法模型的最佳参数进行智能搜索,它的全称是Hyperparameter Optimization。
提升树是采用加法模型与前向分布算法进行提升的,是基于残差进行训练的。提升树分为回归树和二叉分类树,对于分类问题就是分类树(可以参考AdaBoost算法),对于回归问题就是回归树。至于为什么叫“提升”树?我的理解是因为...
来源:DeepHub IMBA本文约500字,建议阅读5分钟Boosting 是一种松散的策略,它将多个简单模型组合成一个复合模型。Boosting 是一种松散的策略,它将多个简单模型组合成一个复合模型。这个想法的理论来自于随着我们引入更多的...