最新 最热

【机器学习】--- 决策树与随机森林

决策树和随机森林是机器学习中的经典算法,因其易于理解和使用广泛而备受关注。尽管如此,随着数据集规模和复杂性增加,这些算法的性能可能会遇到瓶颈。因此,研究决策树与随机森林的改进成为了机器学习领域的一个热点话题。...

2024-09-23
2

【机器学习】Bagging和随机森林

Baggging 框架通过有放回的抽样产生不同的训练集,从而训练具有差异性的弱学习器,然后通过平权投票、多数表决的方式决定预测结果。

2024-09-10
2

【机器学习】迅速了解什么是集成学习

集成学习作为机器学习领域的一项重要技术,其重要性不言而喻。它通过将多个学习器(弱学习器)的预测结果进行有效整合,以显著提升整体模型的泛化能力和预测精度。在复杂多变的现实数据环境中,单一学习器往往难以全面捕捉数据...

2024-09-10
2

【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!

有的同学可能在大学学习过一门课程叫《数据结构》,里面有一个重要的结构就是“树”,和现实生活中的树一样,树的主要由四部分树根、树干、树枝、树叶组成,今天的决策树也是一种树结构,大家学习的时候可以想象现实生活中的树...

2024-09-10
2

Scikit-learn从入门到放弃

Scikit-learn(也称sklearn)是基于Python编程语言的机器学习工具,是简单高效的数据挖掘和数据分析工具,它建立在NumPy、SciPy和matplotlib等库的基础上,可在各种环境中重复使用。其基本功能主要被分为六大部分:分类、回归、...

2024-08-19
1

使用决策树进行探索性数据分析

DT 在运筹学和数据科学领域非常实用,其成功的原因在于它遵循与人类决策过程类似的过程。该过程基于流程图,其中每个节点都会对给定变量进行简单的二元决策,直到我们做出最终决策。...

2024-08-01
2

CatBoost(一):与同类算法的差异对比

导读:在机器学习领域,处理类别型特征一直是个棘手的问题。传统的GBDT算法在这一领域的表现并不尽如人意,直到CatBoost的出现。今天,我们就来聊聊CatBoost是如何优雅地解决这一难题的,以及它在实际应用中的强大之处。...

2024-07-30
2

C4.5决策树及CART决策树

信息增益比本质: 是在信息增益的基础之上乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。惩罚参数:数据集D以特征A作为随机变量的熵的倒数。...

2024-07-30
3

ID决策树的构造原理

有的同学可能在大学学习过一门课程叫《数据结构》,里面有一个重要的结构就是“树”,和现实生活中的树一样,树的主要由四部分树根、树干、树枝、树叶组成,今天的决策树也是一种树结构,大家学习的时候可以想象现实生活中的树...

2024-07-30
1

《机器学习在车险定价中的应用》实验报告

本次实验使用决策树模型进行建模,实现对车险 数据的分析,车险数据为如下MTPLdata.csv数据集:

2024-07-30
1