阅读(3919) (0)

第三章 Haskell类型和类型类

2016-02-24 16:09:32 更新

相信类型

在前面我们谈到Haskell是静态类型的,在编译时每个表达式的类型都已明确,这就提高了代码的安全性。若代码中让布尔值与数字相除,就不会通过编译。这样的好处就是与其让程序在运行时崩溃,不如在编译时捕获可能的错误。Haskell中万物皆有类型,因此在执行编译之时编译器可以大有所为。

与java和pascal不同,haskell支持类型推导。写下一个数字,你就没必要另告诉haskell说“它是个数字”,它自己能推导出来。这样我们就不必在每个函数或表达式上都标明其类型了。在前面我们只简单涉及一下haskell的类型方面的知识,但是理解这一类型系统对于haskell 的学习是至关重要的。

类型是每个表达式都有的某种标签,它标明了这一表达式所属的范畴。例如,表达式True是boolean型,"hello"是个字符串,等等。

可以使用ghci来检测表达式的类型。使用:t命令后跟任何可用的表达式,即可得到该表达式的类型,先试一下:

ghci> :t 'a'   
'a' :: Char   
ghci> :t True   
True :: Bool   
ghci> :t "HELLO!"   
"HELLO!" :: [Char]   
ghci> :t (True, 'a')   
(True, 'a') :: (Bool, Char)   
ghci> :t 4 == 5   
4 == 5 :: Bool

可以看出,:t命令处理一个表达式的输出结果为表达式后跟::及其类型,::读作“它的类型为”。凡是明确的类型,其首字母必为大写。'a',如它的样子,是Char类型,易知是个字符(character)。TrueBool类型,也靠谱。不过这又是啥,检测"hello"得一个[Char]?这方括号表示一个List,所以我们可以将其读作“一组字符的List”。而与List不同,每个Tuple都是独立的类型,于是(True,"a")的类型是(Bool,Char),而('a','b','c')的类型为(Char,Char,Char)4==5一定返回 False,所以它的类型为Bool。

同样,函数也有类型。编写函数时,给它一个明确的类型声明是个好习惯,比较短的函数就不用多此一举了。还记得前面那个过滤大写字母的List Comprehension吗?给它加上类型声明便是这个样子:

removeNonUppercase :: [Char] -> [Char]   
removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']]

removeNonUppercase的类型为[Char]->[Char],从它的参数和返回值的类型上可以看出,它将一个字符串映射为另一个字符串。[Char]String是等价的,但使用String会更清晰:removeNonUppercase :: String -> String。编译器会自动检测出它的类型,我们还是标明了它的类型声明。要是多个参数的函数该怎样?如下便是一个将三个整数相加的简单函数。

addThree :: Int -> Int -> Int -> Int   
addThree x y z = x + y + z

参数之间由->分隔,而与返回值之间并无特殊差异。返回值是最后一项,参数就是前三项。稍后,我们将讲解为何只用->而不是Int,Int,Int->Int之类“更好看”的方式来分隔参数。

如果你打算给你编写的函数加上个类型声明却拿不准它的类型是啥,只要先不写类型声明,把函数体写出来,再使用:t命令测一下即可。函数也是表达式,所以:t对函数也是同样可用的。

如下是几个常见的类型:

Int表示整数。7可以是Int,但7.2不可以。Int是有界的,也就是说它由上限和下限。对32位的机器而言,上限一般是214748364,下限是-214748364。

Integer表示...厄...也是整数,但它是无界的。这就意味着可以用它存放非常非常大的数,我是说非常大。它的效率不如Int高。

factorial :: Integer -> Integer   
factorial n = product [1..n]
ghci> factorial 50   
30414093201713378043612608166064768844377641568960512000000000000

Float表示单精度的浮点数。

circumference :: Float -> Float   
circumference r = 2 * pi * r

ghci> circumference 4.0   
25.132742

Double表示双精度的浮点数。

circumference' :: Double -> Double   
circumference' r = 2 * pi * r

ghci> circumference' 4.0   
25.132741228718345

Bool表示布尔值,它只有两种值:True和False。

Char表示一个字符。一个字符由单引号括起,一组字符的List即为字符串。

Tuple的类型取决于它的长度及其中项的类型。注意,空Tuple同样也是个类型,它只有一种值:()

类型变量

你觉得head函数的类型是啥?它可以取任意类型的List的首项,是怎么做到的呢?我们查一下!

ghci> :t head   
head :: [a] -> a

嗯! a是啥?类型吗?想想我们在前面说过,凡是类型其首字母必大写,所以它不会是个类型。它是个类型变量,意味着a可以是任意的类型。这一点与其他语言中的泛型(generic)很相似,但在haskell中要更为强大。它可以让我们轻而易举地写出类型无关的函数。使用到类型变量的函数被称作“多态函数 ”,head函数的类型声明里标明了它可以取任意类型的List并返回其中的第一个元素。

在命名上,类型变量使用多个字符是合法的,不过约定俗成,通常都是使用单个字符,如a,b,c,d...

还记得fst?我们查一下它的类型:

ghci> :t fst   
fst :: (a, b) -> a

可以看到fst取一个包含两个类型的Tuple作参数,并以第一个项的类型作为返回值。这便是fst可以处理一个含有两种类型项的pair的原因。注意,a和b是不同的类型变量,但它们不一定非得是不同的类型,它只是标明了首项的类型与返回值的类型相同。

类型类101

类型定义行为的接口,如果一个类型属于某类型类,那它必实现了该类型类所描述的行为。很多从OOP走过来的人们往往会把类型类当成面向对象语言中的类而感到疑惑,厄,它们不是一回事。易于理解起见,你可以把它看做是java中接口(interface)的类似物。

==函数的类型声明是怎样的?

ghci> :t (==)   
(==) :: (Eq a) => a -> a -> Bool

Note:判断相等的==运算符是函数,+-*/之类的运算符也是同样。在默认条件下,它们多为中缀函数。若要检查它的类型,就必须得用括号括起使之作为另一个函数,或者说以前缀函数的形式调用它。

有意思。在这里我们见到个新东西:=>符号。它左边的部分叫做类型约束。我们可以这样阅读这段类型声明:“相等函数取两个相同类型的值作为参数并返回一个布尔值,而这两个参数的类型同在Eq类之中(即类型约束)”

Eq这一类型类提供了判断相等性的接口,凡是可比较相等性的类型必属于Eq类。

ghci> 5 == 5    
True    
ghci> 5 /= 5    
False    
ghci> 'a' == 'a'    
True    
ghci> "Ho Ho" == "Ho Ho"    
True    
ghci> 3.432 == 3.432    
True

elem函数的类型为:(Eq a)=>a->[a]->Bool。这是它在检测值是否存在于一个list时使用到了==的缘故。

几个基本的类型类:

Eq包含可判断相等性的类型。提供实现的函数是==和/=。所以,只要一个函数有Eq类的类型限制,那么它就必定在定义中用到了==和/=。刚才说了,除函数意外的所有类型都属于Eq,所以它们都可以判断相等性。

Ord包含可比较大小的类型。除了函数以外,我们目前所谈到的所有类型都属于Ord类。Ord包中包含了,=之类用于比较大小的函数。compare函数取两个Ord类中的相同类型的值作参数,返回比较的结果。这个结果是如下三种类型之一:GT,LT,EQ。

ghci> :t (>)   
(>) :: (Ord a) => a -> a -> Bool

类型若要成为Ord的成员,必先加入Eq家族。

ghci> "Abrakadabra" < "Zebra"   
True   
ghci> "Abrakadabra" `compare` "Zebra"   
LT   
ghci> 5 >= 2   
True   
ghci> 5 `compare` 3   
GT

Show的成员为可用字符串表示的类型。目前为止,除函数以外的所有类型都是Show的成员。操作Show类型类,最常用的函数表示show。它可以取任一Show的成员类型并将其转为字符串。

ghci> show 3   
"3"   
ghci> show 5.334   
"5.334"   
ghci> show True   
"True"

Read是与Show相反的类型类。read函数可以将一个字符串转为Read的某成员类型。

ghci> read "True" || False   
True   
ghci> read "8.2" + 3.8   
12.0   
ghci> read "5" - 2   
3   
ghci> read "[1,2,3,4]" ++ [3]   
[1,2,3,4,3]

一切良好,如上的所有类型都属于这一类型类。尝试read "4"又会怎样?

ghci> read "4"   
< interactive >:1:0:   
    Ambiguous type variable `a' in the constraint:   
      `Read a' arising from a use of `read' at :1:0-7   
    Probable fix: add a type signature that fixes these type variable(s)

ghci跟我们说它搞不清楚我们想要的是什么样的返回值。注意调用read后跟的那部分,ghci通过它来辨认其类型。若要一个boolean值,他就 知道必须得返回一个Bool类型的值。但在这里它只知道我们要的类型属于Read类型类,而不能明确到底是哪个。看一下read函数的类型声明吧:

ghci> :t read   
read :: (Read a) => String -> a

看?它的返回值属于Read类型类,但我们若用不到这个值,它就永远都不会得知该表达式的类型。所以我们需要在一个表达式后跟::类型注释,以明确其类型。如下:

ghci> read "5" :: Int   
5   
ghci> read "5" :: Float   
5.0   
ghci> (read "5" :: Float) * 4   
20.0   
ghci> read "[1,2,3,4]" :: [Int]   
[1,2,3,4]   
ghci> read "(3, 'a')" :: (Int, Char)   
(3, 'a')

编译器可以辨认出大部分表达式的类型,但遇到read "5"的时候它就搞不清楚究竟该是Int还是Float了。只有经过运算,haskell才会明确其类型;同时由于haskell是静态的,它还必须得在 编译前搞清楚所有值的类型。所以我们就最好提前给它打声招呼:“嘿,这个表达式应该是这个类型,省的你认不出来!”

Enum的成员都是连续的类型--也就是可枚举。Enum类存在的主要好处就在于我们可以在Range中用到它的成员类型:每个值都有后继子(successer)和前置子(predecesor),分别可以通过succ函数和pred函数得到。该类型类包含的类型有:(),Bool,Char,Ordering,Int,Integer,FloatDouble

ghci> ['a'..'e']   
"abcde"   
ghci> [LT .. GT]   
[LT,EQ,GT]   
ghci> [3 .. 5]   
[3,4,5]   
ghci> succ 'B'   
'C'

Bounded的成员都有一个上限和下限。

ghci> minBound :: Int   
-2147483648   
ghci> maxBound :: Char   
'\1114111'   
ghci> maxBound :: Bool   
True   
ghci> minBound :: Bool   
False

minBoundmaxBound函数很有趣,它们的类型都是(Bounded a) => a。可以说,它们都是多态常量。

如果其中的项都属于Bounded类型类,那么该Tuple也属于Bounded

ghci> maxBound :: (Bool, Int, Char)   
(True,2147483647,'\1114111')

Num是表示数字的类型类,它的成员类型都具有数字的特征。检查一个数字的类型:

ghci> :t 20   
20 :: (Num t) => t

看样子所有的数字都是多态常量,它可以作为所有Num类型类中的成员类型。以上便是Num类型类中包含的所有类型,检测*运算符的类型,可以发现它可以处理一切的数字:

ghci> :t (*)   
(*) :: (Num a) => a -> a -> a

它只取两个相同类型的参数。所以(5 :: Int) * (6 :: Integer)会引发一个类型错误,而5 * (6 :: Integer)就不会有问题。

类型只有亲近ShowEq,才可以加入Num

Integral同样是表示数字的类型类。Num包含所有的数字:实数和整数。而Intgral仅包含整数,其中的成员类型有Int和Integer。

Floating仅包含浮点类型:Float和Double。

有个函数在处理数字时会非常有用,它便是fromIntegral。其类型声明为:fromIntegral :: (Num b, Integral a) => a -> b。从中可以看出,它取一个整数做参数并返回一个更加通用的数字,这在同时处理整数和浮点时会尤为有用。举例来说,length函数的类型声明为:length :: [a] -> Int,而非更通用的形式,如(Num b) => length :: [a] -> b。这应该时历史原因吧,反正我觉得挺蠢。如果取了一个List长度的值再给它加3.2就会报错,因为这是将浮点数和整数相加。面对这种情况,我们就用fromIntegral (length [1,2,3,4]) + 3.2来解决。

注意到,fromIntegral的类型声明中用到了多个类型约束。如你所见,只要将多个类型约束放到括号里用逗号隔开即可。