Storm 起步
准备开始
准备开始
在本章,我们要创建一个 Storm 工程和我们的第一个 Storm 拓扑结构。
NOTE: 下面假设你的 JRE 版本在 1.6 以上。我们推荐 Oracle 提供的 JRE。你可以到 http://www.java.com/downloads/ 下载。
操作模式
开始之前,有必要了解一下 Storm 的操作模式。有下面两种方式。
本地模式
在本地模式下,Storm 拓扑结构运行在本地计算机的单一 JVM 进程上。这个模式用于开发、测试以及调试,因为这是观察所有组件如何协同工作的最简单方法。在这种模式下,我们可以调整参数,观察我们的拓扑结构如何在不同的 Storm 配置环境下运行。要在本地模式下运行,我们要下载 Storm 开发依赖,以便用来开发并测试我们的拓扑结构。我们创建了第一个 Storm 工程以后,很快就会明白如何使用本地模式了。
NOTE: 在本地模式下,跟在集群环境运行很像。不过很有必要确认一下所有组件都是线程安全的,因为当把它们部署到远程模式时它们可能会运行在不同的 JVM 进程甚至不同的物理机上,这个时候它们之间没有直接的通讯或共享内存。
我们要在本地模式运行本章的所有例子。
远程模式
在远程模式下,我们向 Storm 集群提交拓扑,它通常由许多运行在不同机器上的流程组成。远程模式不会出现调试信息, 因此它也称作生产模式。不过在单一开发机上建立一个 Storm 集群是一个好主意,可以在部署到生产环境之前,用来确认拓扑在集群环境下没有任何问题。
你将在第六章学到更多关于远程模式的内容,并在附录B学到如何安装一个 Storm 集群。
Hello World
我们在这个工程里创建一个简单的拓扑,数单词数量。我们可以把这个看作 Storm 的 “Hello World”。不过,这是一个非常强大的拓扑,因为它能够扩展到几乎无限大的规模,而且只需要做一些小修改,就能用它构建一个统计系统。举个例子,我们可以修改一下工程用来找出 Twitter 上的热点话题。
要创建这个拓扑,我们要用一个 spout 读取文本,第一个 bolt 用来标准化单词,第二个 bolt 为单词计数,如图2-1所示。
你可以从这个网址下载源码压缩包, https://github.com/storm-book/examples-ch02-getting_started/zipball/master。
NOTE: 如果你使用 git(一个分布式版本控制与源码管理工具),你可以执行 git clone https://www.zijiebao.com/storm/git@github.com:storm-book/examples-ch02-getting_started.git
,把源码检出到你指定的目录。
Java 安装检查
构建 Storm 运行环境的第一步是检查你安装的 Java 版本。打开一个控制台窗口并执行命令:java -version。控制台应该会显示出类似如下的内容:
java -version
java version "1.6.0_26"
Java(TM) SE Runtime Enviroment (build 1.6.0_26-b03)
Java HotSpot(TM) Server VM (build 20.1-b02, mixed mode)
如果不是上述内容,检查你的 Java 安装情况。(参考 http://www.java.com/download/)
创建工程
开始之前,先为这个应用建一个目录(就像你平常为 Java 应用做的那样)。这个目录用来存放工程源码。
接下来我们要下载 Storm 依赖包,这是一些 jar 包,我们要把它们添加到应用类路径中。你可以采用如下两种方式之一完成这一步:
- 下载所有依赖,解压缩它们,把它 们添加到类路径
- 使用 Apache Maven
NOTE: Maven 是一个软件项目管理的综合工具。它可以用来管理项目的开发周期的许多方面,从包依赖到版本发布过程。在这本书中,我们将广泛使用它。如果要检查是否已经安装了maven,在命令行运行 mvn。如果没有安装你可以从 http://maven.apache.org/download.html下载。
没有必要先成为一个 Maven 专家才能使用 Storm,不过了解一下关于 Maven 工作方式的基础知识仍然会对你有所帮助。你可以在 Apache Maven 的网站上找到更多的信息(http://maven.apache.org/)。
NOTE: Storm 的 Maven 依赖引用了运行 Storm 本地模式的所有库。
要运行我们的拓扑,我们可以编写一个包含基本组件的 pom.xml 文件。
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>storm.book</groupId>
<artifactId>Getting-Started</artifactId>
<version>0.0.1-SNAPSHOT</version>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
<compilerVersion>1.6</compilerVersion>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>clojars.org</id>
<url>http://clojars.org/repo</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>storm</groupId>
<artifactId>storm</artifactId>
<version>0.6.0</version>
</dependency>
</dependencies>
</project>
开头几行指定了工程名称和版本号。然后我们添加了一个编译器插件,告知 Maven 我们的代码要用 Java1.6 编译。接下来我们定义了 Maven 仓库(Maven 支持为同一个工程指定多个仓库)。clojars 是存放 Storm 依赖的仓库。Maven 会为运行本地模式自动下载必要的所有子包依赖。
一个典型的 Maven Java 工程会拥有如下结构:
我们的应用目录/
├── pom.xml
└── src
└── main
└── java
| ├── spouts
| └── bolts
└── resources
java 目录下的子目录包含我们的代码,我们把要统计单词数的文件保存在 resource 目录下。
NOTE:命令 mkdir -p 会创建所有需要的父目录。
创建我们的第一个 Topology
我们将为运行单词计数创建所有必要的类。可能这个例子中的某些部分,现在无法讲的很清楚,不过我们会在随后的章节做进一步的讲解。
Spout
pout WordReader 类实现了 IRichSpout 接口。我们将在第四章看到更多细节。WordReader负责从文件按行读取文本,并把文本行提供给第一个 bolt。
NOTE: 一个 spout 发布一个定义域列表。这个架构允许你使用不同的 bolts 从同一个spout 流读取数据,它们的输出也可作为其它 bolts 的定义域,以此类推。
例2-1包含 WordRead 类的完整代码(我们将会分析下述代码的每一部分)。
/
例2-1.src/main/java/spouts/WordReader.java
/
package spouts;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
public class WordReader implements IRichSpout {
private SpoutOutputCollector collector;
private FileReader fileReader;
private boolean completed = false;
private TopologyContext context;
public boolean isDistributed() {return false;}
public void ack(Object msgId) {
System.out.println("OK:"+msgId);
}
public void close() {}
public void fail(Object msgId) {
System.out.println("FAIL:"+msgId);
}
/
这个方法做的惟一一件事情就是分发文件中的文本行
/
public void nextTuple() {
/
这个方法会不断的被调用,直到整个文件都读完了,我们将等待并返回。
/
if(completed){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
//什么也不做
}
return;
}
String str;
//创建reader
BufferedReader reader = new BufferedReader(fileReader);
try{
//读所有文本行
while((str = reader.readLine()) != null){
/
按行发布一个新值
/
this.collector.emit(new Values(str),str);
}
}catch(Exception e){
throw new RuntimeException("Error reading tuple",e);
}finally{
completed = true;
}
}
/
我们将创建一个文件并维持一个collector对象
/
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
try {
this.context = context;
this.fileReader = new FileReader(conf.get("wordsFile").toString());
} catch (FileNotFoundException e) {
throw new RuntimeException("Error reading file ["+conf.get("wordFile")+"]");
}
this.collector = collector;
}
/
声明输入域"word"
/
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line"));
}
}
第一个被调用的 spout 方法都是 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector)。它接收如下参数:配置对象,在定义topology 对象是创建;TopologyContext 对象,包含所有拓扑数据;还有SpoutOutputCollector 对象,它能让我们发布交给 bolts 处理的数据。下面的代码主是这个方法的实现。
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
try {
this.context = context;
this.fileReader = new FileReader(conf.get("wordsFile").toString());
} catch (FileNotFoundException e) {
throw new RuntimeException("Error reading file ["+conf.get("wordFile")+"]");
}
this.collector = collector;
}
我们在这个方法里创建了一个 FileReader 对象,用来读取文件。接下来我们要实现 public void nextTuple(),我们要通过它向 bolts 发布待处理的数据。在这个例子里,这个方法要读取文件并逐行发布数据。
public void nextTuple() {
if(completed){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
//什么也不做
}
return;
}
String str;
BufferedReader reader = new BufferedReader(fileReader);
try{
while((str = reader.readLine()) != null){
this.collector.emit(new Values(str));
}
}catch(Exception e){
throw new RuntimeException("Error reading tuple",e);
}finally{
completed = true;
}
}
NOTE: Values 是一个 ArrarList 实现,它的元素就是传入构造器的参数。
nextTuple() 会在同一个循环内被 ack() 和 fail() 周期性的调用。没有任务时它必须释放对线程的控制,其它方法才有机会得以执行。因此 nextTuple 的第一行就要检查是否已处理完成。如果完成了,为了降低处理器负载,会在返回前休眠一毫秒。如果任务完成了,文件中的每一行都已被读出并分发了。
NOTE:元组(tuple)是一个具名值列表,它可以是任意 java 对象(只要它是可序列化的)。默认情况,Storm 会序列化字符串、字节数组、ArrayList、HashMap 和 HashSet 等类型。
Bolts
现在我们有了一个 spout,用来按行读取文件并每行发布一个元组,还要创建两个 bolts,用来处理它们(看图2-1)。bolts 实现了接口 backtype.storm.topology.IRichBolt。
bolt最重要的方法是void execute(Tuple input),每次接收到元组时都会被调用一次,还会再发布若干个元组。
NOTE: 只要必要,bolt 或 spout 会发布若干元组。当调用 nextTuple 或 execute 方法时,它们可能会发布0个、1个或许多个元组。你将在第五章学习更多这方面的内容。
第一个 bolt,WordNormalizer,负责得到并标准化每行文本。它把文本行切分成单词,大写转化成小写,去掉头尾空白符。
首先我们要声明 bolt 的出参:
public void declareOutputFields(OutputFieldsDeclarer declarer){
declarer.declare(new Fields("word"));
}
这里我们声明 bolt 将发布一个名为 “word” 的域。
下一步我们实现 public void execute(Tuple input),处理传入的元组:
public void execute(Tuple input){
String sentence=input.getString(0);
String[] words=sentence.split(" ");
for(String word : words){
word=word.trim();
if(!word.isEmpty()){
word=word.toLowerCase();
//发布这个单词
collector.emit(new Values(word));
}
}
//对元组做出应答
collector.ack(input);
}
第一行从元组读取值。值可以按位置或名称读取。接下来值被处理并用collector对象发布。最后,每次都调用collector 对象的 ack() 方法确认已成功处理了一个元组。
例2-2是这个类的完整代码。
//例2-2 src/main/java/bolts/WordNormalizer.java
package bolts;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordNormalizer implements IRichBolt{
private OutputCollector collector;
public void cleanup(){}
/
bolt从单词文件接收到文本行,并标准化它。
文本行会全部转化成小写,并切分它,从中得到所有单词。
/
public void execute(Tuple input){
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for(String word : words){
word = word.trim();
if(!word.isEmpty()){
word=word.toLowerCase();
//发布这个单词
List a = new ArrayList();
a.add(input);
collector.emit(a,new Values(word));
}
}
//对元组做出应答
collector.ack(input);
}
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}
/
这个bolt只会发布“word”域
/
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
NOTE:通过这个例子,我们了解了在一次 execute 调用中发布多个元组。如果这个方法在一次调用中接收到句子 “This is the Storm book”,它将会发布五个元组。
下一个bolt,WordCounter,负责为单词计数。这个拓扑结束时(cleanup() 方法被调用时),我们将显示每个单词的数量。
NOTE: 这个例子的 bolt 什么也没发布,它把数据保存在 map 里,但是在真实的场景中可以把数据保存到数据库。
package bolts; import java.util.HashMap; import java.util.Map; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.IRichBolt; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.tuple.Tuple; public class WordCounter implements IRichBolt{ Integer id; String name; Map counters; private OutputCollector collector; / 这个spout结束时(集群关闭的时候),我们会显示单词数量 / @Override public void cleanup(){ System.out.println("-- 单词数 【"+name+"-"+id+"】 --"); for(Map.Entry entry : counters.entrySet()){ System.out.println(entry.getKey()+": "+entry.getValue()); } } / 为每个单词计数 /
@Override public void execute(Tuple input) { String str=input.getString(0); /** 如果单词尚不存在于map,我们就创建一个,如果已在,我们就为它加1 / if(!counters.containsKey(str)){ counters.put(str,1); }else{ Integer c = counters.get(str) + 1; counters.put(str,c); } //对元组作为应答 collector.ack(input); }/ 初始化 / @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector){ this.counters = new HashMap(); this.collector = collector; this.name = context.getThisComponentId(); this.id = context.getThisTaskId(); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {}}
execute 方法使用一个 map 收集单词并计数。拓扑结束时,将调用 clearup() 方法打印计数器 map。(虽然这只是一个例子,但是通常情况下,当拓扑关闭时,你应当使用 cleanup() 方法关闭活动的连接和其它资源。)
主类
你可以在主类中创建拓扑和一个本地集群对象,以便于在本地测试和调试。LocalCluster 可以通过 Config 对象,让你尝试不同的集群配置。比如,当使用不同数量的工作进程测试你的拓扑时,如果不小心使用了某个全局变量或类变量,你就能够发现错误。(更多内容请见第三章)
NOTE:所有拓扑节点的各个进程必须能够独立运行,而不依赖共享数据(也就是没有全局变量或类变量),因为当拓扑运行在真实的集群环境时,这些进程可能会运行在不同的机器上。
接下来,TopologyBuilder 将用来创建拓扑,它决定 Storm 如何安排各节点,以及它们交换数据的方式。
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("word-reader", new WordReader());
builder.setBolt("word-normalizer", new WordNormalizer()).shuffleGrouping("word-reader");
builder.setBolt("word-counter", new WordCounter()).shuffleGrouping("word-normalizer");
在 spout 和 bolts 之间通过 shuffleGrouping 方法连接。这种分组方式决定了 Storm 会以随机分配方式从源节点向目标节点发送消息。
下一步,创建一个包含拓扑配置的 Config 对象,它会在运行时与集群配置合并,并通过prepare 方法发送给所有节点。
Config conf = new Config();
conf.put("wordsFile", args[0]);
conf.setDebug(true);
由 spout 读取的文件的文件名,赋值给 wordFile 属性。由于是在开发阶段,设置 debug 属性为 true,Strom 会打印节点间交换的所有消息,以及其它有助于理解拓扑运行方式的调试数据。
正如之前讲过的,你要用一个 LocalCluster 对象运行这个拓扑。在生产环境中,拓扑会持续运行,不过对于这个例子而言,你只要运行它几秒钟就能看到结果。
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("Getting-Started-Topologie", conf, builder.createTopology());
Thread.sleep(2000);
cluster.shutdown();
调用 createTopology 和 submitTopology,运行拓扑,休眠两秒钟(拓扑在另外的线程运行),然后关闭集群。
例2-3是完整的代码
//例2-3 src/main/java/TopologyMain.java
import spouts.WordReader;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import bolts.WordCounter;
import bolts.WordNormalizer;
public class TopologyMain {
public static void main(String[] args) throws InterruptedException {
//定义拓扑
TopologyBuilder builder = new TopologyBuilder());
builder.setSpout("word-reader", new WordReader());
builder.setBolt("word-normalizer", new WordNormalizer()).shuffleGrouping("word-reader");
builder.setBolt("word-counter", new WordCounter(),2).fieldsGrouping("word-normalizer", new Fields("word"));
//配置
Config conf = new Config();
conf.put("wordsFile", args[0]);
conf.setDebug(false);
//运行拓扑
conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("Getting-Started-Topologie", conf, builder.createTopology();
Thread.sleep(1000);
cluster.shutdown();
}
}
观察运行情况
你已经为运行你的第一个拓扑准备好了。在这个目录下面创建一个文件,/src/main/resources/words.txt,一个单词一行,然后用下面的命令运行这个拓扑:mvn exec:java -Dexec.mainClass=”TopologyMain” -Dexec.args=”src/main/resources/words.txt。举个例子,如果你的 words.txt 文件有如下内容: Storm test are great is an Storm simple application but very powerful really Storm is great 你应该会在日志中看到类似下面的内容: is: 2 application: 1 but: 1 great: 1 test: 1 simple: 1 Storm: 3 really: 1 are: 1 great: 1 an: 1 powerful: 1 very: 1 在这个例子中,每类节点只有一个实例。但是如果你有一个非常大的日志文件呢?你能够很轻松的改变系统中的节点数量实现并行工作。这个时候,你就要创建两个 WordCounter* 实例。
builder.setBolt("word-counter", new WordCounter(),2).shuffleGrouping("word-normalizer");
程序返回时,你将看到: — 单词数 【word-counter-2】 — application: 1 is: 1 great: 1 are: 1 powerful: 1 Storm: 3 — 单词数 [word-counter-3] — really: 1 is: 1 but: 1 great: 1 test: 1 simple: 1 an: 1 very: 1 棒极了!修改并行度实在是太容易了(当然对于实际情况来说,每个实例都会运行在单独的机器上)。不过似乎有一个问题:单词 is 和 great 分别在每个 WordCounter 各计数一次。怎么会这样?当你调用shuffleGrouping 时,就决定了 Storm 会以随机分配的方式向你的 bolt 实例发送消息。在这个例子中,理想的做法是相同的单词问题发送给同一个 WordCounter 实例。你把shuffleGrouping(“word-normalizer”) 换成 fieldsGrouping(“word-normalizer”, new Fields(“word”)) 就能达到目的。试一试,重新运行程序,确认结果。 你将在后续章节学习更多分组方式和消息流类型。
结论
我们已经讨论了 Storm 的本地和远程操作模式之间的不同,以及 Storm 的强大和易于开发的特性。你也学习了一些 Storm 的基本概念,我们将在后续章节深入讲解它们。