阅读(3380)
赞(0)
impala ORDER BY子句
2016-12-19 07:54:38 更新
Impala ORDER BY子句用于根据一个或多个列以升序或降序对数据进行排序。 默认情况下,一些数据库按升序对查询结果进行排序。
语法
以下是ORDER BY子句的语法。
select * from table_name ORDER BY col_name [ASC|DESC] [NULLS FIRST|NULLS LAST]
可以使用关键字ASC或DESC分别按升序或降序排列表中的数据。
以同样的方式,如果我们使用NULLS FIRST,表中的所有空值都排列在顶行; 如果我们使用NULLS LAST,包含空值的行将最后排列。
例
假设我们在数据库my_db中有一个名为customers的表,其内容如下 -
[quickstart.cloudera:21000] > select * from customers; Query: select * from customers +----+----------+-----+-----------+--------+ | id | name | age | address | salary | +----+----------+-----+-----------+--------+ | 3 | kaushik | 23 | Kota | 30000 | | 1 | Ramesh | 32 | Ahmedabad | 20000 | | 2 | Khilan | 25 | Delhi | 15000 | | 6 | Komal | 22 | MP | 32000 | | 4 | Chaitali | 25 | Mumbai | 35000 | | 5 | Hardik | 27 | Bhopal | 40000 | +----+----------+-----+-----------+--------+ Fetched 6 row(s) in 0.51s
以下是使用order by子句按照其ID的升序排列customers表中的数据的示例。
[quickstart.cloudera:21000] > Select * from customers ORDER BY id asc;
在执行时,上述查询产生以下输出。
Query: select * from customers ORDER BY id asc +----+----------+-----+-----------+--------+ | id | name | age | address | salary | +----+----------+-----+-----------+--------+ | 1 | Ramesh | 32 | Ahmedabad | 20000 | | 2 | Khilan | 25 | Delhi | 15000 | | 3 | kaushik | 23 | Kota | 30000 | | 4 | Chaitali | 25 | Mumbai | 35000 | | 5 | Hardik | 27 | Bhopal | 40000 | | 6 | Komal | 22 | MP | 32000 | +----+----------+-----+-----------+--------+ Fetched 6 row(s) in 0.56s
同样,您可以使用order by子句按降序排列customers表的数据,如下所示。
[quickstart.cloudera:21000] > Select * from customers ORDER BY id desc;
在执行时,上述查询产生以下输出。
Query: select * from customers ORDER BY id desc +----+----------+-----+-----------+--------+ | id | name | age | address | salary | +----+----------+-----+-----------+--------+ | 6 | Komal | 22 | MP | 32000 | | 5 | Hardik | 27 | Bhopal | 40000 | | 4 | Chaitali | 25 | Mumbai | 35000 | | 3 | kaushik | 23 | Kota | 30000 | | 2 | Khilan | 25 | Delhi | 15000 | | 1 | Ramesh | 32 | Ahmedabad | 20000 | +----+----------+-----+-----------+--------+ Fetched 6 row(s) in 0.54s