阅读(974) (0)

第四章 Haskell函数的语法

2016-02-24 16:09:33 更新
  • 模式匹配
  • 什么是 Guards

  • 关键字 Where
  • 关键字 Let
  • Case expressions

模式匹配

本章讲的就是haskell那套酷酷的语法结构,先从模式匹配开始。模式匹配通过检查数据的特定结构来检查其是否匹配,并按模式从中取得数据。

在定义函数时,你可以为不同的模式分别定义函数体,这就让代码更加简洁易读。你可以匹配一切数据类型---数字,字符,List,元组,等等。我们弄个简单函数,让它检查我们传给它的数字是不是7。

lucky :: (Integral a) => a -> String   
lucky 7 = "LUCKY NUMBER SEVEN!"   
lucky x = "Sorry, you're out of luck, pal!"   

在调用lucky时,模式会从上至下进行检查,一旦有匹配,那对应的函数体就被应用了。这个模式中的唯一匹配是参数为7,如果不是7,就转到下一个模式,它匹配一切数值并将其绑定为x。这个函数完全可以使用if实现,不过我们若要个分辨1到5中的数字,而无视其它数的函数该怎么办?要是没有模式匹配的话,那可得好大一棵if-else树了!

sayMe :: (Integral a) => a -> String   
sayMe 1 = "One!"   
sayMe 2 = "Two!"   
sayMe 3 = "Three!"   
sayMe 4 = "Four!"   
sayMe 5 = "Five!"   
sayMe x = "Not between 1 and 5"  

注意下,如果我们把最后匹配一切的那个模式挪到最前,它的结果就全都是"Not between 1 and 5"  了。因为它自己匹配了一切数字,不给后面的模式留机会。

记得前面实现的那个阶乘函数么?当时是把n的阶乘定义成了product [1..n]。也可以写出像数学那样的递归实现,先说明0的阶乘是1,再说明每个正整数的阶乘都是这个数与它前驱(predecessor)对应的阶乘的积。如下便是翻译到haskell的样子:

factorial :: (Integral a) => a -> a   
factorial 0 = 1   
factorial n = n * factorial (n - 1)  

这就是我们定义的第一个递归函数。递归在haskell中十分重要,我们会在后面深入理解。如果拿一个数(如3)调用factorial函数,这就是接下来的计算步骤:先计算3*factorial 2factorial 2等于2*factorial 1,也就是3*(2*(factorial 1))factorial 1等于1*factorial 0,好,得3*(2*(1*factorial 0)),递归在这里到头了,嗯---我们在万能匹配前面有定义,0的阶乘是1.于是最终的结果等于3*(2*(1*1))。若是把第二个模式放在前面,它就会捕获包括0在内的一切数字,这一来我们的计算就永远都不会停止了。这便是为什么说模式的顺序是如此重要:它总是优先匹配最符合的那个,最后才是那个万能的。

模式匹配也会失败。假如这个函数:

charName :: Char -> String   
charName 'a' = "Albert"   
charName 'b' = "Broseph"   
charName 'c' = "Cecil"  

拿个它没有考虑到的字符去调用它,你就会看到这个:

ghci> charName 'a'   
"Albert"   
ghci> charName 'b'   
"Broseph"   
ghci> charName 'h'   
"*** Exception: tut.hs:(53,0)-(55,21): Non-exhaustive patterns in function charName  

它告诉我们说,这个模式不够全面。因此,在定义模式时,一定要留一个万能匹配的模式,这样我们的程序就不会为了不可预料的输入而崩溃了。

对Tuple同样可以使用模式匹配。写个函数,将二维空间中的向量相加该如何?将它们的x项和y项分别相加就是了。如果不了解模式匹配,我们很可能会写出这样的代码:

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)   
addVectors a b = (fst a + fst b, snd a + snd b)  

嗯,可以运行。但有更好的方法,上模式匹配:

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)   
addVectors (x1, y1) (x2, y2) = (x1 + x2, y1 + y2)  

there we go!好多了!注意,它已经是个万能的匹配了。两个addVector的类型都是addVectors:: (Num a) => (a,a) -> (a,a) -> (a,a),我们就能够保证,两个参数都是序对(Pair)了。

fst和snd可以从序对中取出元素。三元组(Tripple)呢?嗯,没现成的函数,得自己动手:

first :: (a, b, c) -> a   
first (x, _, _) = x   

second :: (a, b, c) -> b   
second (_, y, _) = y   

third :: (a, b, c) -> c   
third (_, _, z) = z  

这里的_就和List Comprehension中一样。表示我们不关心这部分的具体内容。

说到List Comprehension,我想起来在List Comprehension中也能用模式匹配:

ghci> let xs = [(1,3), (4,3), (2,4), (5,3), (5,6), (3,1)]  
ghci> [a+b | (a,b) <- xs]  
[4,7,6,8,11,4]   

一旦模式匹配失败,它就简单挪到下个元素。

对list本身也可以使用模式匹配。你可以用[]:来匹配它。因为[1,2,3]本质就是1:2:3:[]的语法糖。你也可以使用前一种形式,像x:xs这样的模式可以将list的头部绑定为x,尾部绑定为xs。如果这list只有一个元素,那么xs就是一个空list。

Note:x:xs这模式的应用非常广泛,尤其是递归函数。不过它只能匹配长度大于等于1的list。

如果你要把list的前三个元素都绑定到变量中,可以使用类似x:y:z:xs这样的形式。它只能匹配长度大于等于3的list。

我们已经知道了对list做模式匹配的方法,就实现个我们自己的head函数。

head' :: [a] -> a   
head' [] = error "Can't call head on an empty list, dummy!"   
head' (x:_) = x  

看看管不管用:

ghci> head' [4,5,6]   
4   
ghci> head' "Hello"   
'H'  

漂亮!注意下,你若要绑定多个变量(用_也是如此),我们必须用括号将其括起。同时注意下我们用的这个error函数,它可以生成一个运行时错误,用参数中的字符串表示对错误的描述。它会直接导致程序崩溃,因此应谨慎使用。可是对一个空list取head真的不靠谱哇。

弄个简单函数,让它用非标准的英语给我们展示list的前几项。

tell :: (Show a) => [a] -> String   
tell [] = "The list is empty"   
tell (x:[]) = "The list has one element: " ++ show x   
tell (x:y:[]) = "The list has two elements: " ++ show x ++ " and " ++ show y   
tell (x:y:_) = "This list is long. The first two elements are: " ++ show x ++ " and " ++ show y  

这个函数顾及了空list,单元素list,双元素list以及较长的list,所以这个函数很安全。(x:[])(x:y:[])也可以写作[x][x,y](有了语法糖,我们不必多加括号)。不过(x:y:_)这样的模式就不行了,因为它匹配的list长度不固定。

我们曾用List Comprehension实现过自己的length函数,现在用模式匹配和递归重新实现它:

length' :: (Num b) => [a] -> b   
length' [] = 0   
length' (_:xs) = 1 + length' xs  

这与先前写的那个factorial函数很相似。先定义好未知输入的结果---空list,这也叫作边界条件。再在第二个模式中将这List分割为头部和尾部。说,List的长度就是其尾部的长度加1。匹配头部用的_,因为我们并不关心它的值。同时也应明确,我们顾及了List所有可能的模式:第一个模式匹配空list,第二个匹配任意的非空list。

看下拿"ham"调用length'会怎样。首先它会检查它是否为空List。显然不是,于是进入下一模式。它匹配了第二个模式,把它分割为头部和尾部并无视掉头部的值,得长度就是1+length' "am"。ok。以此类推,"am"length就是1+length' "m"。好,现在我们有了1+(1+length' "m")length' "m"1+length ""(也就是1+length' [])。根据定义,length' []等于0。最后得1+(1+(1+0))

再实现sum。我们知道空list的和是0,就把它定义为一个模式。我们也知道一个list的和就是头部加上尾部的和的和。写下来就成了:

sum' :: (Num a) => [a] -> a   
sum' [] = 0   
sum' (x:xs) = x + sum' xs  

还有个东西叫做as模式,就是将一个名字和@置于模式前,可以在按模式分割什么东西时仍保留对其整体的引用。如这个模式xs@(x:y:ys),它会匹配出与x:y:ys对应的东西,同时你也可以方便地通过xs得到整个list,而不必在函数体中重复x:y:ys。看下这个quick and dirty的例子:

capital :: String -> String   
capital "" = "Empty string, whoops!"   
capital all@(x:xs) = "The first letter of " ++ all ++ " is " ++ [x]  
ghci> capital "Dracula"   
"The first letter of Dracula is D"  

我们使用as模式通常就是为了在较大的模式中保留对整体的引用,从而减少重复性的工作。

还有——你不可以在模式匹配中使用++。若有个模式是(xs++ys),那么这个List该从什么地方分开呢?不靠谱吧。而(xs++[x,y,z])或只一个(xs++[x])或许还能说的过去,不过出于list的本质,这样写也是不可以的。

什么是 Guards

模式用来检查一个值是否合适并从中取值,而 guard 则用来检查一个值的某项属性是否为真。咋一听有点像是 ​if ​语句,实际上也正是如此。不过处理多个条件分支时 guard 的可读性要高些,并且与模式匹配契合的很好。

guards

在讲解它的语法前,我们先看一个用到 guard 的函数。它会依据你的 BMI 值 (body mass index,身体质量指数)来不同程度地侮辱你。BMI 值即为体重除以身高的平方。如果小于 18.5,就是太瘦;如果在 18.5 到 25 之间,就是正常;25 到 30 之间,超重;如果超过 30,肥胖。这就是那个函数(我们目前暂不为您计算 BMI,它只是直接取一个 BMI 值)。

bmiTell :: (RealFloat a) => a -> String  
bmiTell bmi  
    | bmi <= 18.5 = "You're underweight, you emo, you!"  
    | bmi <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"  
    | bmi <= 30.0 = "You're fat! Lose some weight, fatty!"  
    | otherwise   = "You're a whale, congratulations!"

guard 由跟在函数名及参数后面的竖线标志,通常他们都是靠右一个缩进排成一列。一个 guard 就是一个布尔表达式,如果为真,就使用其对应的函数体。如果为假,就送去见下一个 guard,如之继续。如果我们用 24.3 调用这个函数,它就会先检查它是否小于等于 18.5,显然不是,于是见下一个 guard。24.3 小于 25.0,因此通过了第二个 guard 的检查,就返回第二个字串。

在这里则是相当的简洁,不过不难想象这在命令式语言中又会是怎样的一棵 if-else 树。由于 if-else 的大树比较杂乱,若是出现问题会很难发现,guard 对此则十分清楚。

最后的那个 guard 往往都是 ​otherwise​,它的定义就是简单一个 ​otherwise = True​ ,捕获一切。这与模式很相像,只是模式检查的是匹配,而它们检查的是布尔表达式 。如果一个函数的所有 guard 都没有通过(而且没有提供 ​otherwise ​作万能匹配),就转入下一模式。这便是 guard 与模式契合的地方。如果始终没有找到合适的 guard 或模式,就会发生一个错误。

当然,guard 可以在含有任意数量参数的函数中使用。省得用户在使用这函数之前每次都自己计算 ​bmi​。我们修改下这个函数,让它取身高体重为我们计算。

bmiTell :: (RealFloat a) => a -> a -> String  
bmiTell weight height  
    | weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"  
    | weight / height ^ 2 <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"  
    | weight / height ^ 2 <= 30.0 = "You're fat! Lose some weight, fatty!"  
    | otherwise                 = "You're a whale, congratulations!"

你可以测试自己胖不胖。

ghci> bmiTell 85 1.90  
"You're supposedly normal. Pffft, I bet you're ugly!"

运行的结果是我不太胖。不过程序却说我很丑。

要注意一点,函数的名字和参数的后面并没有 ​=​。许多初学者会造成语法错误,就是因为在后面加上了 ​=​。

另一个简单的例子:写个自己的 ​max ​函数。应该还记得,它是取两个可比较的值,返回较大的那个。

max' :: (Ord a) => a -> a -> a  
max' a b   
    | a > b     = a  
    | otherwise = b

guard 也可以塞在一行里面。但这样会丧失可读性,因此是不被鼓励的。即使是较短的函数也是如此,不过出于展示,我们可以这样重写 ​max'​:

max' :: (Ord a) => a -> a -> a  
max' a b | a > b = a | otherwise = b

这样的写法根本一点都不容易读。

我们再来试试用 guard 实现我们自己的 ​compare ​函数:

myCompare :: (Ord a) => a -> a -> Ordering  
a `myCompare` b  
    | a > b     = GT  
    | a == b    = EQ  
    | otherwise = LT
ghci> 3 `myCompare` 2  
GT
*Note*:通过反单引号,我们不仅可以以中缀形式调用函数,也可以在定义函数的时候使用它。有时这样会更易读。

关键字 Where

前一节中我们写了这个 ​bmi ​计算函数:

bmiTell :: (RealFloat a) => a -> a -> String  
bmiTell weight height  
    | weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"  
    | weight / height ^ 2 <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"  
    | weight / height ^ 2 <= 30.0 = "You're fat! Lose some weight, fatty!"  
    | otherwise                   = "You're a whale, congratulations!"

注意,我们重复了 3 次。我们重复了 3 次。程序员的字典里不应该有"重复"这个词。既然发现有重复,那么给它一个名字来代替这三个表达式会更好些。嗯,我们可以这样修改:

bmiTell :: (RealFloat a) => a -> a -> String  
bmiTell weight height  
    | bmi <= 18.5 = "You're underweight, you emo, you!"  
    | bmi <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"  
    | bmi <= 30.0 = "You're fat! Lose some weight, fatty!"  
    | otherwise   = "You're a whale, congratulations!"  
    where bmi = weight / height ^ 2

我们的 where 关键字跟在 guard 后面(最好是与竖线缩进一致),可以定义多个名字和函数。这些名字对每个 guard 都是可见的,这一来就避免了重复。如果我们打算换种方式计算 bmi,只需进行一次修改就行了。通过命名,我们提升了代码的可读性,并且由于 bmi 只计算了一次,函数的执行效率也有所提升。我们可以再做下修改:

bmiTell :: (RealFloat a) => a -> a -> String  
bmiTell weight height  
    | bmi <= skinny = "You're underweight, you emo, you!"  
    | bmi <= normal = "You're supposedly normal. Pffft, I bet you're ugly!"  
    | bmi <= fat    = "You're fat! Lose some weight, fatty!"  
    | otherwise     = "You're a whale, congratulations!"  
    where bmi = weight / height ^ 2  
          skinny = 18.5  
          normal = 25.0  
          fat = 30.0

函数在 where 绑定中定义的名字只对本函数可见,因此我们不必担心它会污染其他函数的命名空间。注意,其中的名字都是一列垂直排开,如果不这样规范,Haskell 就搞不清楚它们在哪个地方了。

where 绑定不会在多个模式中共享。如果你在一个函数的多个模式中重复用到同一名字,就应该把它置于全局定义之中。

where 绑定也可以使用模式匹配!前面那段代码可以改成:

...  
where bmi = weight / height ^ 2  
      (skinny, normal, fat) = (18.5, 25.0, 30.0)

我们再搞个简单函数,让它告诉我们姓名的首字母:

initials :: String -> String -> String  
initials firstname lastname = [f] ++ ". " ++ [l] ++ "."  
    where (f:_) = firstname  
          (l:_) = lastname

我们完全按可以在函数的参数上直接使用模式匹配(这样更短更简洁),在这里只是为了演示在 where 语句中同样可以使用模式匹配:

where 绑定可以定义名字,也可以定义函数。保持健康的编程语言风格,我们搞个计算一组 bmi 的函数:

calcBmis :: (RealFloat a) => [(a, a)] -> [a]  
calcBmis xs = [bmi w h | (w, h) <- xs] 
    where bmi weight height = weight / height ^ 2

这就全了!在这里将 bmi 搞成一个函数,是因为我们不能依据参数直接进行计算,而必须先从传入函数的 List 中取出每个序对并计算对应的值。

where 绑定还可以一层套一层地来使用。 有个常见的写法是,在定义一个函数的时候也写几个辅助函数摆在 where 绑定中。 而每个辅助函数也可以透过 where 拥有各自的辅助函数。

关键字 Let

let 绑定与 where 绑定很相似。where 绑定是在函数底部定义名字,对包括所有 guard 在内的整个函数可见。let 绑定则是个表达式,允许你在任何位置定义局部变量,而对不同的 guard 不可见。正如 Haskell 中所有赋值结构一样,let 绑定也可以使用模式匹配。看下它的实际应用!这是个依据半径和高度求圆柱体表面积的函数:

cylinder :: (RealFloat a) => a -> a -> a  
cylinder r h = 
    let sideArea = 2 * pi * r * h  
        topArea = pi * r ^2  
    in  sideArea + 2 * topArea

letitbe

let 的格式为 let [bindings] in [expressions]。在 let 中绑定的名字仅对 in 部分可见。let 里面定义的名字也得对齐到一列。不难看出,这用 where 绑定也可以做到。那么它俩有什么区别呢?看起来无非就是,let 把绑定放在语句前面而 where 放在后面嘛。

不同之处在于,let 绑定本身是个表达式,而 where 绑定则是个语法结构。还记得前面我们讲if语句时提到它是个表达式,因而可以随处安放?

ghci> [if 5 > 3 then "Woo" else "Boo", if 'a' > 'b' then "Foo" else "Bar"]  
["Woo", "Bar"]  
ghci> 4 * (if 10 > 5 then 10 else 0) + 2  
42

let 绑定也可以实现:

ghci> 4 * (let a = 9 in a + 1) + 2  
42

let 也可以定义局部函数:

ghci> [let square x = x * x in (square 5, square 3, square 2)]  
[(25,9,4)]

若要在一行中绑定多个名字,再将它们排成一列显然是不可以的。不过可以用分号将其分开。

ghci> (let a = 100; b = 200; c = 300 in a*b*c, let foo="Hey "; bar = "there!" in foo ++ bar)  
(6000000,"Hey there!")

最后那个绑定后面的分号不是必须的,不过加上也没关系。如我们前面所说,你可以在 let 绑定中使用模式匹配。这在从 Tuple 取值之类的操作中很方便。

ghci> (let (a,b,c) = (1,2,3) in a+b+c) * 100  
600

你也可以把 let 绑定放到 List Comprehension 中。我们重写下那个计算 bmi 值的函数,用个 let 替换掉原先的 where

calcBmis :: (RealFloat a) => [(a, a)] -> [a]  
calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2]

List Comprehension 中 let 绑定的样子和限制条件差不多,只不过它做的不是过滤,而是绑定名字。let 中绑定的名字在输出函数及限制条件中都可见。这一来我们就可以让我们的函数只返回胖子的 bmi 值:

calcBmis :: (RealFloat a) => [(a, a)] -> [a]  
calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2, bmi >= 25.0]

(w, h) <- xs 这里无法使用 bmi 这名字,因为它在 let 绑定的前面。

在 List Comprehension 中我们忽略了 let 绑定的 in 部分,因为名字的可见性已经预先定义好了。不过,把一个 let...in 放到限制条件中也是可以的,这样名字只对这个限制条件可见。在 ghci 中 in 部分也可以省略,名字的定义就在整个交互中可见。

ghci> let zoot x y z = x * y + z  
ghci> zoot 3 9 2  
29  
ghci> let boot x y z = x * y + z in boot 3 4 2  
14  
ghci> boot  
< interactive>:1:0: Not in scope: `boot'

你说既然 let 已经这么好了,还要 where 干嘛呢?嗯,let 是个表达式,定义域限制的相当小,因此不能在多个 guard 中使用。一些朋友更喜欢 where,因为它是跟在函数体后面,把主函数体距离型别声明近一些会更易读。

Case expressions

case

有命令式编程语言 (C, C++, Java, etc.) 的经验的同学一定会有所了解,很多命令式语言都提供了 case 语句。就是取一个变量,按照对变量的判断选择对应的代码块。其中可能会存在一个万能匹配以处理未预料的情况。

Haskell 取了这一概念融合其中。如其名,case 表达式就是,嗯,一种表达式。跟 if..elselet 一样的表达式。用它可以对变量的不同情况分别求值,还可以使用模式匹配。Hmm,取一个变量,对它模式匹配,执行对应的代码块。好像在哪儿听过?啊,就是函数定义时参数的模式匹配!好吧,模式匹配本质上不过就是 case 语句的语法糖而已。这两段代码就是完全等价的:

head' :: [a] -> a  
head' [] = error "No head for empty lists!"  
head' (x:_) = x
head' :: [a] -> a  
head' xs = case xs of [] -> error "No head for empty lists!"  
                      (x:_) -> x

看得出,case表达式的语法十分简单:

case expression of pattern -> result  
                   pattern -> result  
                   pattern -> result  
                   ...

expression 匹配合适的模式。 一如预期地,第一个模式若匹配,就执行第一个区块的代码;否则就接下去比对下一个模式。如果到最后依然没有匹配的模式,就会产生运行时错误。

函数参数的模式匹配只能在定义函数时使用,而 ​case ​表达式可以用在任何地方。例如:

describeList :: [a] -> String  
describeList xs = "The list is " ++ case xs of [] -> "empty."  
                                               [x] -> "a singleton list."   
                                               xs -> "a longer list."

这在表达式中作模式匹配很方便,由于模式匹配本质上就是 case 表达式的语法糖,那么写成这样也是等价的:

describeList :: [a] -> String  
describeList xs = "The list is " ++ what xs  
    where what [] = "empty."  
          what [x] = "a singleton list."  
          what xs = "a longer list."