PyTorch 开发者在实现的同时,发布了一篇论文:[ PyTorch Distributed: Experiences on Accelerating Data Parallel Training ] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter N...
关于分布式通信,PyTorch 提供的几个概念是:进程组,后端,初始化,Store。
本文是 PyTorch 分布式系列的第六篇, 介绍 DistributedDataParallel 所依赖的初始化方法和Store这两个概念。
日前,市场调研机构弗若斯特沙利文联合头豹研究院发布《2021年中国AI开发平台市场报告》。
本文是 PyTorch 分布式系列的第五篇,以几篇官方文档的翻译为基础,加入了自己的一些思考,带领大家进入DistributedDataParallel,在后续会用5~6篇左右做深入分析。...
本文以 PyTorch 官方文档 https://pytorch.org/tutorials/intermediate/dist_tuto.html 为基础,对如何编写分布式进行了介绍,并且加上了自己的理解。
本文使用深度强化技术来优化网站上的广告位,以最大限度地提高用户点击的概率并增加数字营销收入。在介绍概念的同时提供了带有代码的详细案例,可以作为在任何真实示例中实施解决方案。...
过拟合和概率校准是训练深度学习模型时出现的两个问题。深度学习中有很多正则化技术可以解决过拟合问题;权重衰减、早停机制和dropout是都是最常见的方式。Platt缩放和保序回归可以用于模型校准。...
我们先回忆一下目前的前向图,replicate 调用了Broadcast.forward,同时往其context 存储了input_device和num_inputs。
无论是在统治NLP届的Transformer,还是最近视觉领域的新秀Vision Transformer,我们都能在模型中看到Transpose/Permute算子的身影,特别是在多头注意力机制(Multi-Head Attention)中,需要该算子来改变数据维度排布。...