词表大小从32000增加到128256,这也是导致参数量从7B增至8B的主要原因。更大的词表使得模型涵盖的语言更多、更加通用
你是否也遇到了在尝试从PyTorch官方网站下载时,面临下载速度缓慢甚至超时的问题?
在有些时候我们需要保存训练好的参数为path文件,以防不测,下次可以直接加载该轮epoch的参数接着训练,但是在重新加载时发现类似报错:
从 PyTorch 1.4 版本开始,引入了一个新的功能 torch.cuda.set_per_process_memory_fraction(fraction, device),这个功能允许用户为特定的 GPU 设备设置进程可使用的显存上限比例。...