Understanding the Effective Receptive Field in Deep Convolutional Neural Networks NIPS 2016
CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization CVPR2018 http://www.sfu.ca/~ftung/ 裁剪和量化一体化框架
二项分布有两个参数,一个 n 表示试验次数,一个 p 表示一次试验成功概率。现在考虑一列二项分布,其中试验次数 n 无限增加,而 p 是 n 的函数。
1、泊松分布泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产...