到目前为止,我们已经看到了强化学习在 AlphaGo,自动驾驶,项目组合管理等方面的进步。 研究表明,强化学习可以提供认知特征,例如动物行为。
目标检测是计算机视觉最重要的应用之一。 对象检测是同时定位和识别图像中存在的对象的任务。 为了使自动驾驶汽车安全地在街道上行驶,该算法必须检测到行人,道路,车辆,交通信号灯,标志和意外障碍物的存在。 在安全方面,入...
正如我们已经探索的那样,GAN 可以通过学习数据分布来产生有意义的输出。 但是,无法控制所生成输出的属性。 GAN 的一些变体,例如条件 GAN(CGAN)和辅助分类器 GAN(ACGAN),如前两章所讨论的,都可以训练生成器,该生成器可以合成特...
在第一章中,我们将介绍在本书中将使用的三个深度学习人工神经网络。 这些网络是 MLP,CNN 和 RNN(在第 2 节中定义和描述),它们是本书涵盖的所选高级深度学习主题的构建块,例如自回归网络(自编码器,GAN 和 VAE),深度强化学习 ,对...
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗...
本书的这一部分将为您简要概述 TensorFlow 2.0 中的新增功能,与 TensorFlow 1.x 的比较,惰性求值和急切执行之间的差异,架构级别的更改以及关于tf.keras和Estimator的 API 使用情况。...
本章介绍如何设置开发环境,以使用 TensorFlow 构建所有 iOS 或 Android 应用,本书其余部分对此进行了讨论。 我们不会详细讨论可用于开发的所有受支持的 TensorFlow 版本,OS 版本,Xcode 和 Android Studio 版本,因为可以在...
商业企业广泛使用高级分析工具,以解决使用数据的问题。 分析工具的目的是分析数据并提取相关信息,这些信息可用于解决问题或提高业务某些方面的表现。 它还涉及各种机器学习算法,通过这些算法我们可以创建预测模型以获得...
TensorFlow 是用于使用数据流图进行数值计算的开源软件库。 图中的节点表示数学运算,而图的边缘表示在它们之间传递的多维数据数组(张量)。
卷积神经网络是当前使用的许多最高级模型的一部分。 它们被用于许多领域,但是主要的应用领域是图像分类和特征检测领域。