TensorFlow 是解决机器学习和深度学习问题的流行库之一。在开发供 Google 内部使用后,它作为开源发布供公众使用和开发。让我们理解 TensorFlow 的三个模型:数据模型,编程模型和执行模型。...
在涉及有序数据序列的问题中,例如时间序列预测和自然语言处理,上下文对于预测输出非常有价值。可以通过摄取整个序列而不仅仅是最后一个数据点来确定这些问题的上下文。因此,先前的输出成为当前输入的一部分,并且当重复时...
在本章中,我们将介绍一些基本的秘籍,以便了解 TensorFlow 的工作原理以及如何访问本书的数据和其他资源。
在本章中,我们将介绍神经网络以及如何在 TensorFlow 中实现它们。大多数后续章节将基于神经网络,因此学习如何在 TensorFlow 中使用它们非常重要。在开始使用多层网络之前,我们将首先介绍神经网络的基本概念。在上一节中...
在本章中,我们将介绍循环神经网络(RNN)以及如何在 TensorFlow 中实现它们。我们将首先演示如何使用 RNN 来预测垃圾邮件。然后,我们将介绍一种用于创建莎士比亚文本的 RNN 变体。我们将通过创建 RNN 序列到序列模型来完成...
在本部分中,我们将介绍 TensorFlow 2.00 alpha。 我们将首先概述该机器学习生态系统的主要功能,并查看其使用示例。 然后我们将介绍 TensorFlow 的高级 Keras API。 我们将在本节结尾处研究人工神经网络技术。...
在本节中,我们将首先看到 TensorFlow 在监督机器学习中的许多应用,包括线性回归,逻辑回归和聚类。 然后,我们将研究无监督学习,特别是应用于数据压缩和去噪的自编码。...
在本节中,我们将研究许多人工神经网络(ANN)应用。 这些包括图像识别,神经风格迁移,文本风格生成,时尚识别以及电影评论的 IMDb 数据库的语义分析。...
TensorFlow 是 Google 创建的开源软件库,可让您构建和执行数据流图以进行数值计算。 在这些图中,每个节点表示要执行的某些计算或功能,连接节点的图边表示它们之间流动的数据。 在 TensorFlow 中,数据是称为张量的多维数...
本章将介绍一种与到目前为止所看到的模型稍有不同的模型。 到目前为止提供的所有模型都属于一种称为判别模型的模型。 判别模型旨在找到不同类别之间的界限。 他们对找到P(Y|X)-给定某些输入X的输出Y的概率感兴趣。 ...