你可以使用K折交叉验证或者分割训练集/测试集的方法处理数据集,并用来训练模型。这样做为了能够让训练出来的模型对新数据集做出预测。
作者:Eryk Lewinson翻译:汪桉旭校对:zrx本文约4400字,建议阅读5分钟本文研究了三种使用日期相关的信息如何创造有意义特征的方法。 标签:时间帧,机器学习,Python,技术演示 想象一下,你刚开始一个新的数据科学项目。目标是建立...
集成方法是将两个或多个单独的机器学习算法的结果结合在一起,并试图产生比任何单个算法都准确的结果。
Scikit-learn库,实现了一系列数据挖掘算法,提供通用编程接口、标准化的测试和调参工具,便于用户尝试不同算法对其进行充分测试和查找优参数值。
首先确保最新的版本吧,python最让人头痛和无解的就是版本兼容性问题,不过既然选择了就不要怕麻烦,不断的纠错不断的尝试,在频繁的错误中提高自己。...
注:本文选自机械工业出版社出版的《从零开始构建深度前馈神经网络(Python+TensorFlow 2.x)》一书,略有改动。经出版社授权刊登于此。
课程门槛较低,只要有本科三年级以上的数学知识,会一种编程语言,就可以掌握这门课程的绝大部分内容。
https://github.com/YC-Coder-Chen/feature-engineering-handbook
特征工程在机器学习中的重要性不言而喻,恰当的特征工程能显著提升机器学习模型性能。我们在 Github 上整理编写了一份系统的特征工程教程,供大家参考学习。...
早在去年的这个时候,红色石头就发文给大家推荐过一本非常棒的机器学习实用指南书籍《Hands-On Machine Learning with Scikit-Learn & TensorFlow》,中文译为《Scikit-Learn 与 TensorFlow 机器学习实用指南》。...