总第488篇 2022年 第005篇 查询改写是对用户Query拓展改写词,用更好的表述,帮用户召回更多符合需求的结果。查询改写对于文本布尔检索系统是非常重要的扩召回手段,通过优化该算法模块能够直接且显著地提升搜索体验。本...
应对于这些问题,其中的一个解决方案就是:自动化的工具,有些人喜欢称之为器。支撑这些工具的便是一系列的原则与模式,将它们融入到工具之中。另外一个解决人成长的方案就是:元元(meta-meta),这是另外一个故事。...
来源:Deephub Imba本文共2700字,建议阅读5分钟本文能让你对Transformer的整体架构有所了解。 多年来,深度学习一直在不断发展。深度学习实践高度强调使用大量参数来提取有关我们正在处理的数据集的有用信息。通过拥有大...
来源:DeepHub IMBA本文约1000字,建议阅读5分钟本片文章将对词嵌入的模型做一个完整的总结。 TF-IDF, Word2Vec, GloVe, FastText, ELMO, CoVe, BERT, RoBERTa 词嵌入在深度模型中的作用是为下游任务(如序列标记和文本分...
来源:AI前线本文共5000字,建议阅读10+分钟本文中吴恩达回顾了 2021 年全球人工智能在多模态、大模型、智能语音生成、Transformer 架构、各国 AI 法律举措等方面的主要进展。 近期,机器学习大牛吴恩达(Andrew Ng)在其主编...
来源:专知本文约5000字,建议阅读5分钟本文为你介绍了《图神经网络综述》。 中国石油大学《图神经网络最新》综述论文 近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受到人们的关注。图神经网络的出现...
来源:PaperWeekly本文约2300字,建议阅读9分钟本文介绍了最新发布的中文自然语言评估指数—智源指数。 作为深度学习研究的重要组成部分,评测 benchmark 扮演着评估模型性能、指导研究方向的重要角色。在自然语言处理中,针...
博雯 发自 凹非寺量子位 | 公众号 QbitAI 近几年,随着业内“大力出奇迹”的趋势,Transformer的模型参数量也是水涨船高。 不过,当参数从数百万增加至数十亿,甚至数万亿,性能实现相应提升时,Transformer的深度也受到了训练不...
丰色 发自 凹非寺量子位 | 公众号 QbitAI 众所周知,BERT在预训练时会对某些单词进行拆分 (术语叫做“WordPiece”)。 比如把“loved”、“loving”和“loves”拆分成“lov”、“ed”、“ing”和”es”。 目的是缩减词表...
作者 秦浩桐量子位 转载 | 公众号 QbitAI 近年来,预训练语言模型在自然语言处理上表现出色,但其庞大的参数量阻碍了它在真实世界的硬件设备上的部署。 近日,机器学习顶会ICLR 2022接收论文结果已经正式公布,至少有9项工作...